27,479 research outputs found
Variants of the human PPARG locus and the susceptibility to chronic periodontitis
Apart from its regulatory function in lipid and glucose metabolism, peroxisome proliferator-activated receptor (PPAR)γ has impact on the regulation of inflammation and bone metabolism. The aim of the study was to investigate the association of five polymorphisms (rs10865710, rs2067819, rs3892175, rs1801282, rs3856806) within the PPARG gene with chronic periodontitis. The study population comprised 402 periodontitis patients and 793 healthy individuals. Genotyping of the PPARG gene polymorphisms was performed by PCR and melting curve analysis. Comparison of frequency distribution of genotypes between individuals with periodontal disease and healthy controls for the polymorphism rs3856806 showed a P-value of 0.04 but failed to reach significance after correction for multiple testing (P 0.90). A 3-site analysis (rs2067819-rs1801282-rs3856860) revealed five haplotypes with a frequency of ≥1% among cases and controls. Following adjustment for age, gender and smoking, none of the haplotypes was significantly different between periodontitis and healthy controls after Bonferroni correction. This study could not show a significant association between PPARG gene variants and chronic periodontitis
Modeling of a gas concentration measurement system
Energy expenditure can be calculated via measurement of oxygen consumption and carbon dioxide production. Precise measurement of expired gas concentrations and volume is required for this determination. For a given gas concentration measurement system, the establishment of a model is a good way to effectively use the equipments and achieve more accurate energy expenditure calculations. This paper proposes a simple but effective approach for the modeling of a gas concentration measurement system. © 2005 IEEE
Estimation of oxygen consumption for moderate exercises by using a hammerstein model
This paper aims to establish block-structured nonlinear model (Hammerstein model) to predict oxygen uptake during moderate treadmill exercises. In order to model the steady state relationship between oxygen uptake (oxygen consumption) and walking speed, six healthy male subjects walked on a motor driven treadmill at six different speed (2,3,4,5,6, and 7 km/h). The averaged oxygen uptake of exercisers at steady state was measured by a mixing chamber based gas analyzer(AEI Moxus Metabolic Cart). Based on these reliable experiment data, a nonlinear static function was obtained by using Support Vector Regression. In order to capture the dynamics of oxygen uptake, a suitable Pseudo Random Binary Signal (PRBS) input was designed and implemented on a computer controlled treadmill. Breath by breath analysis of all exercisers' dynamic responses (PRBS responses) to treadmill walking was performed. A useful ARX model is identified to justify the measured oxygen uptake dynamics within the aerobic range. Finally, a Hammerstein is achieved, which is useful for the control system design of oxygen uptake regulation during treadmill exercises. © 2006 IEEE
On the uncertain future of the volumetric 3D display paradigm.
Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available and so primarily focus on other issues that have impeded the broad commercialization and application of this display paradigm. This is of particular relevance given the recent resurgence of interest in developing commercially viable, general purpose, volumetric systems. We particularly consider image and display characteristics, usability issues and identify several advantageous attributes that need to be exploited in order to effectively capitalize on this display modality.N/
Identification and control for heart rate regulation during treadmill exercise
This paper proposes a novel integrated approach for the identification and control of Hammerstein systems to achieve desired heart rate profile tracking performance for an automated treadmill system. For the identification of Hammerstein systems, the pseudorandom binary sequence input is employed to decouple the identification of dynamic linear part from input nonlinearity. The powerful ε-insensitivity support vector regression method is adopted to obtain sparse representations of the inverse of static nonlinearity in order to obtain an approximate linear model of the Hammerstein system. An H ∞ controller is designed for the approximated linear model to achieve robust tracking performance. This new approach is successfully applied to the design of a computer-controlled treadmill system for the regulation of heart rate during treadmill exercise. Minimizing deviations of heart rate from a preset profile is achieved by controlling the speed of the treadmill. Both conventional proportional-integral-derivative (PID) control and the proposed approaches have been employed for the controller design. The proposed algorithm achieves much better heart rate tracking performance. © 2007 IEEE
A nonlinear dynamic model for heart rate response to treadmill walking exercise
A dynamic model of the heart rate response to treadmill walking exercise is presented. The model is a feedback interconnected system; the subsystem in the forward path represents the neural response to exercise, while the subsystem in the feedback path describes the peripheral local response. The parameters of the model were estimated from 5 healthy adult male subjects, each undertaking 3 sets of walking exercise at different speeds. Simulated responses from the model closely match the experimental data both in the exercise and the recovery phases. The model will be useful in explaining the cardiovascular response to exercise and in the design of exercise protocols for individuals. © 2007 IEEE
A note on the index of closed minimal hypersurfaces of flat tori
Generalizing earlier work by Ros in ambient dimension three, we prove an affine lower bound for the Morse index of closed minimal hypersurfaces inside a flat torus in terms of their first Betti number (with purely dimensional coefficients)
Time constant of heart rate recovery after low level exercise as a useful measure of cardiovascular fitness
In this study we aimed to establish the usefulness of the time constant of heart rate recovery (Tr) in the evaluation of cardiovascular fitness. 15 male subjects exercised on recumbent bicycle at three different workloads (75W, 100W 125W) where R-R intervals were monitored to determine Tr. In order to find the maximal oxygen uptake (V̇O2max) of each subject, oxygen consumption rate (V̇O2) was recorded throughout the treadmill exercise (10km/h). Based on V̇O2max' we classified the subjects into two groups: the "fit" group and the "unfit" group. We found a significant difference in Tr between these two groups only existed when the workload was 75W (p ≤ 0.01) and only at this workload did the R-R intervals achieve stability during the 5 minutes of exercise. Furthermore, we found the cut-off value for predicting cardiovascular fitness at this workload was 55 seconds, with an associated sensitivity of 85.7% and specificity of 87.5%. © 2006 IEEE
Analysis of orientation error of triaxial accelerometers on the assessment of energy expenditure
This paper investigates the effects of orientation error in the positioning of triaxial accelerometers on the assessment of energy expenditure. Four subjects walked on a treadmill at varying velocities ranging from 4km.h -1 to 5km.h-1. During each test, a triaxial accelerometer attached to the lower back at arbitrary orientations to record body accelerations. Energy expenditure was estimated by the sum of the integrals of the absolute value of accelerometer output from all the three measurement directions. Based on theoretical analysis and experimental observations, it is concluded that small orientation errors ( < 3° ) have no distinguishable effects on the estimation of energy expenditure. We propose an efficient method to compensate for larger orientation errors. The experimental results verified the effectiveness of this proposed compensation method. ©2005 IEEE
- …
