113,151 research outputs found
Boundary Condition of Polyelectrolyte Adsorption
The modification of the boundary condition for polyelectrolyte adsorption on
charged surface with short-ranged interaction is investigated under two
regimes. For weakly charged Gaussian polymer in which the short-ranged
attraction dominates, the boundary condition is the same as that of the neutral
polymer adsorption. For highly charged polymer (compressed state) in which the
electrostatic interaction dominates, the linear relationship (electrostatic
boundary condition) between the surface monomer density and the surface charge
density needs to be modified.Comment: 4 page
Using fractals and power laws to predict the location of mineral deposits
Around the world the mineral exploration industry is interested in getting that small increase in probability measure on the earth's surface of where the next large undiscovered deposit might be found. In particular WMC Resources Ltd has operations world wide looking for just that edge in the detection of very large deposits of, for example, gold. Since the pioneering work of Mandelbrot, geologists have been familiar with the concept of fractals and self similarity over a few orders of magnitude for geological features. This includes the location and size of deposits within a particular mineral province. Fractal dimensions have been computed for such provinces and similarities of these aggregated measures between provinces have been noted. This paper explores the possibility of making use of known information to attempt the inverse process. That is, from lesser dimensional measures of a mineral province, for example, fractal dimension or more generally multi-fractal measures, is it possible to infer, even with small increase in probability, where the unknown (preferably large) deposits might be located
Intense terahertz laser fields on a two-dimensional electron gas with Rashba spin-orbit coupling
The spin-dependent density of states and the density of spin polarization of
an InAs-based two-dimensional electron gas with the Rashba spin-orbit coupling
under an intense terahertz laser field are investigated by utilizing the
Floquet states to solve the time-dependent Schr\"odinger equation.
It is found that both densities are strongly affected by the terahertz laser
field. Especially a terahertz magnetic moment perpendicular to the external
terahertz laser field in the electron gas is induced. This effect can be used
to convert terahertz electric signals into terahertz magnetic ones efficiently.Comment: 3 pages, 3 figures, a typo in Fig. 3(b) is correcte
Correlation between cohesive energy and mixing rate in ion mixing of metallic bilayers
We have compared the mixing rate of several 5d-4d metal bilayers which form ideal solutions. We observe a strong correlation between the mixing rate and the average cohesive energy of each bilayer. A model based on the thermal spike concept is proposed to explain this behavior. The model leads to a general expression describing mixing rates in metallic bilayers
Spin relaxation under identical Dresselhaus and Rashba coupling strengths in GaAs quantum wells
Spin relaxation under identical Dresselhaus and Rashba coupling strengths in
GaAs quantum wells is studied in both the traditional collinear statistics,
where the energy spectra do not contain the spin-orbit coupling terms, and the
helix statistics, where the spin-orbit couplings are included in the energy
spectra. We show that there is only marginal difference between the spin
relaxation times obtained from these two different statistics. We further show
that with the cubic term of the Dresselhaus spin-orbit coupling included, the
spin relaxation time along the (1,1,0) direction becomes finite, although it is
still much longer than that along the other two perpendicular directions. The
properties of the spin relaxation along this special direction under varies
conditions are studied in detail.Comment: 9 pages, 4 figures. J. Appl. Phys. 99, 2006 (in press
Hole spin relaxation in semiconductor quantum dots
Hole spin relaxation time due to the hole-acoustic phonon scattering in GaAs
quantum dots confined in quantum wells along (001) and (111) directions is
studied after the exact diagonalization of Luttinger Hamiltonian. Different
effects such as strain, magnetic field, quantum dot diameter, quantum well
width and the temperature on the spin relaxation time are investigated
thoroughly. Many features which are quite different from the electron spin
relaxation in quantum dots and quantum wells are presented with the underlying
physics elaborated.Comment: 10 pages, 10 figure
Product Measure Steady States of Generalized Zero Range Processes
We establish necessary and sufficient conditions for the existence of
factorizable steady states of the Generalized Zero Range Process. This process
allows transitions from a site to a site involving multiple particles
with rates depending on the content of the site , the direction of
movement, and the number of particles moving. We also show the sufficiency of a
similar condition for the continuous time Mass Transport Process, where the
mass at each site and the amount transferred in each transition are continuous
variables; we conjecture that this is also a necessary condition.Comment: 9 pages, LaTeX with IOP style files. v2 has minor corrections; v3 has
been rewritten for greater clarit
Effect of thermodynamics on ion mixing
Ion mixing of elemental 4d-5d metallic bilayers at 77 K by 600 keV Xe + + ions has been studied to test the validity of the phenomenological model of ion mixing that predicts a dependence on the chemical heats of mixing, DeltaHmix, and on the cohesive energies, DeltaHcoh, of the bilayer elements. A series of samples was chosen to minimize the variation in kinematical properties between samples while maximizing the variation in heats of mixing. The experimental results agree well with the model's predictions, and the experimentally determined constants K1=0.034 Å and K2=27 agree with those of previous work
- …
