53,440 research outputs found

    Nuclear Reactions Rates Governing the Nucleosynthesis of Ti44

    Full text link
    Large excesses of Ca44 in certain presolar graphite and silicon carbide grains give strong evidence for Ti44 production in supernovae. Furthermore, recent detection of the Ti44 gamma-line from the Cas A SNR by CGRO/COMPTEL shows that radioactive Ti44 is produced in supernovae. These make the Ti44 abundance an observable diagnostic of supernovae. Through use of a nuclear reaction network, we have systematically varied reaction rates and groups of reaction rates to experimentally identify those that govern Ti44 abundance in core-collapse supernova nucleosynthesis. We survey the nuclear-rate dependence by repeated calculations of the identical adiabatic expansion, with peak temperature and density chosen to be 5.5xE9 K and 1E7 g/cc, respectively, to approximate the conditions in detailed supernova models. We find that, for equal total numbers of neutrons and protons (eta=0), Ti44 production is most sensitive to the following reaction rates: Ti44(alpha,p)V47, alpha(2alpha,gamma)C12, Ti44(alpha,gamma)Cr48, V45(p,gamma)Cr46. We tabulate the most sensitive reactions in order of their importance to the Ti44 production near the standard values of currently accepted cross-sections, at both reduced reaction rate (0.01X) and at increased reaction rate (100X) relative to their standard values. Although most reactions retain their importance for eta > 0, that of V45(p,gamma)Cr46 drops rapidly for eta >= 0.0004. Other reactions assume greater significance at greater neutron excess: C12(alpha,gamma)O16, Ca40(alpha,gamma)Ti44, Al27(alpha,n)P30, Si30(alpha,n)S33. Because many of these rates are unknown experimentally, our results suggest the most important targets for future cross section measurements governing the value of this observable abundance.Comment: 37 pages, LaTex, 17 figures, 8 table

    Gamma ray constraints on the Galactic supernova rate

    Get PDF
    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission

    Predictions with Lattice QCD

    Get PDF
    In recent years, we used lattice QCD to calculate some quantities that were unknown or poorly known. They are the q2q^2 dependence of the form factor in semileptonic DKlνD\to Kl\nu decay, the leptonic decay constants of the D+D^+ and DsD_s mesons, and the mass of the BcB_c meson. In this paper, we summarize these calculations, with emphasis on their (subsequent) confirmation by measurements in e+ee^+e^-, γp\gamma p and pˉp\bar{p}p collisions.Comment: 5 pages; update of hep-lat/0509169, with experimental confirmation of form factors from Belle and fDs from BaBar; presented at SciDAC 2006 for the Fermilab Lattice, MILC, and HPQCD Collaboration

    Regulating Systemic Risk: Towards an Analytical Framework

    Get PDF
    The global financial crisis demonstrated the inability and unwillingness of financial market participants to safeguard the stability of the financial system. It also highlighted the enormous direct and indirect costs of addressing systemic crises after they have occurred, as opposed to attempting to prevent them from arising. Governments and international organizations are responding with measures intended to make the financial system more resilient to economic shocks, many of which will be implemented by regulatory bodies over time. These measures suffer, however, from the lack of a theoretical account of how systemic risk propagates within the financial system and why regulatory intervention is needed to disrupt it. In this Article, we address this deficiency by examining how systemic risk is transmitted. We then proceed to explain why, in the absence of regulation, market participants cannot be relied upon to disrupt or otherwise limit the transmission of systemic risk. Finally, we advance an analytical framework to inform systemic risk regulation
    corecore