192 research outputs found
"Dark energy" in the Local Void
The unexpected discovery of the accelerated cosmic expansion in 1998 has
filled the Universe with the embarrassing presence of an unidentified "dark
energy", or cosmological constant, devoid of any physical meaning. While this
standard cosmology seems to work well at the global level, improved knowledge
of the kinematics and other properties of our extragalactic neighborhood
indicates the need for a better theory. We investigate whether the recently
suggested repulsive-gravity scenario can account for some of the features that
are unexplained by the standard model. Through simple dynamical considerations,
we find that the Local Void could host an amount of antimatter
() roughly equivalent to the mass of a typical
supercluster, thus restoring the matter-antimatter symmetry. The antigravity
field produced by this "dark repulsor" can explain the anomalous motion of the
Local Sheet away from the Local Void, as well as several other properties of
nearby galaxies that seem to require void evacuation and structure formation
much faster than expected from the standard model. At the global cosmological
level, gravitational repulsion from antimatter hidden in voids can provide more
than enough potential energy to drive both the cosmic expansion and its
acceleration, with no need for an initial "explosion" and dark energy.
Moreover, the discrete distribution of these dark repulsors, in contrast to the
uniformly permeating dark energy, can also explain dark flows and other
recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space
Scienc
Infinite Kinematic Self-Similarity and Perfect Fluid Spacetimes
Perfect fluid spacetimes admitting a kinematic self-similarity of infinite
type are investigated. In the case of plane, spherically or hyperbolically
symmetric space-times the field equations reduce to a system of autonomous
ordinary differential equations. The qualitative properties of solutions of
this system of equations, and in particular their asymptotic behavior, are
studied. Special cases, including some of the invariant sets and the geodesic
case, are examined in detail and the exact solutions are provided. The class of
solutions exhibiting physical self-similarity are found to play an important
role in describing the asymptotic behavior of the infinite kinematic
self-similar models.Comment: 38 pages, 6 figures. Accepted for publication in General Relativity &
Gravitatio
Are There Quantum Effects Coming from Outside Space-time? Nonlocality, free will and "no many-worlds"
Observing the violation of Bell's inequality tells us something about all
possible future theories: they must all predict nonlocal correlations. Hence
Nature is nonlocal. After an elementary introduction to nonlocality and a brief
review of some recent experiments, I argue that Nature's nonlocality together
with the existence of free will is incompatible with the many-worlds view of
quantum physics.Comment: Talk presented at the meeting "Is Science Compatible with Our Desire
for Freedom?" organised by the Social Trends Institute at the IESE Business
School in Barcelona, Octobre 201
Spin-gravity coupling and gravity-induced quantum phases
External gravitational fields induce phase factors in the wave functions of
particles. The phases are exact to first order in the background gravitational
field, are manifestly covariant and gauge invariant and provide a useful tool
for the study of spin-gravity coupling and of the optics of particles in
gravitational or inertial fields. We discuss the role that spin-gravity
coupling plays in particular problems.Comment: 18 pages, 1 figur
How spiking neurons give rise to a temporal-feature map
A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse changes, then all other synapses connected to the same axon change by a small fraction as well. The learning equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature map and the synchronization of the single cells’ synaptic structures, in dependence upon the strength of presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit
from the nonlinearity
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
Is Quantum Mechanics Incompatible with Newton's First Law
Quantum mechanics (QM) clearly violates Newton's First Law of Motion (NFLM)
in the quantum domain for one of the simplest problems, yielding an effect in a
force-free region much like the Aharonov-Bohm effect. In addition, there is an
incompatibility between the predictions of QM in the classical limit, and that
of classical mechanics (CM) with respect to NFLM. A general argument is made
that such a disparity may be found commonly for a wide variety of quantum
predictions in the classical limit. Alternatives to the Schrodinger equation
are considered that might avoid this problem. The meaning of the classical
limit is examined. Critical views regarding QM by Schrodinger, Bohm, Bell,
Clauser, and others are presented to provide a more complete perspective.Comment: Paper has been revised to conform to published versio
Time-Dependent Models for a decade of SN 1993J
A classical and a relativistic law of motion for a supernova remnant (SNR)
are deduced assuming an inverse power law behavior for the density of the
interstellar medium and applying the thin layer approximation. A third equation
of motion is found in the framework of relativistic hydrodynamics with
pressure, applying momentum conservation. These new formulas are calibrated
against a decade of observations of \snr. The existing knowledge of the
diffusive processes of ultrarelativistic electrons is reviewed in order to
explain the behavior of the `U' shaped profile of intensity versus distance
from the center of SN 1993J.Comment: 20 pages 19 figures, Accepted for pubblication in Astrophysics and
Space Science 201
- …
