2,511 research outputs found
Theory of Melting and the Optical Properties of Gold/DNA Nanocomposites
We describe a simple model for the melting and optical properties of a
DNA/gold nanoparticle aggregate. The optical properties at fixed wavelength
change dramatically at the melting transition, which is found to be higher and
narrower in temperature for larger particles, and much sharper than that of an
isolated DNA link. All these features are in agreement with available
experiments. The aggregate is modeled as a cluster of gold nanoparticles on a
periodic lattice connected by DNA bonds, and the extinction coefficient is
computed using the discrete dipole approximation. Melting takes place as an
increasing number of these bonds break with increasing temperature. The melting
temperature corresponds approximately to the bond percolation threshold.Comment: 5 pages, 4 figure. To be published in Phys. Rev.
SRSF1-dependent nuclear export of C9ORF72 repeat-transcripts: targeting toxic gain-of-functions induced by protein sequestration as a selective therapeutic strategy for neuroprotection
Microsatellite repeat expansions cause several incurable and lethal neurodegenerative disorders including
ataxias, myotonic dystrophy, Huntington's disease and C9ORF72-linked amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD). Abnormal repeat transcripts generated from the expanded loci are substrates
of repeat-associated non-AUG (RAN) translation, an unconventional form of translation leading to the
production of polymeric repeat proteins with cytotoxic and aggregating properties. The mechanisms involved in
the pathogenesis of microsatellite repeat expansion disorders remain a hotly debated topic. They are shared
between toxic loss/gain of functions due to intranuclear RNA foci that sequesters RNA-binding proteins and
RAN translation of repeat proteins in the cytoplasm. We recently elucidated the molecular mechanism driving
the nuclear export of C9ORF72 repeat transcripts and showed for the first time that this pathway can be
manipulated to confer neuroprotection. Strikingly, we discovered that intron-retaining C9ORF72 repeat
transcripts hijack the physiological NXF1-dependent export pathway by selective RNA-repeat sequestration of
SRSF1. Antagonizing SRSF1 and the nuclear export of C9ORF72 repeat transcripts promoted in turn the
survival of patient-derived motor neurons and suppressed neurodegeneration-associated motor deficits in
Drosophila (Hautbergue et al. Nature Communications 2017; 8:16063). In this invited Research Highlight review,
we aim to place this work in the context of our previous studies on the nuclear export of mRNAs, provide a
summary of the published research and highlight the significance of these findings as a novel therapeutic
strategy for neuroprotection in C9ORF72-ALS/FTD. In addition, we emphasize that protein sequestration, often
thought as of inducing loss-of-function mechanisms, can also trigger unwanted protein interactions and toxic
gain-of-functions
Longitudinal broadening of near side jets due to parton cascade
Longitudinal broadening along direction on near side in
two-dimensional () di-hadron correlation
distribution has been studied for central Au+Au collisions at =
200 GeV, within a dynamical multi-phase transport model. It was found that the
longitudinal broadening is generated by a longitudinal flow induced by strong
parton cascade in central Au+Au collisions, in comparison with p+p collisions
at = 200 GeV. The longitudinal broadening may shed light on the
information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.
Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion towards all normal dispersion
Soliton operation and soliton wavelength tuning of erbium-doped fiber lasers
mode locked with atomic layer graphene was experimentally investigated under
various cavity dispersion conditions. It was shown that not only wide range
soliton wavelength tuning but also soltion pulse width variation could be
obtained in the fiber lasers. Our results show that the graphene mode locked
erbium-doped fiber lasers provide a compact, user friendly and low cost
wavelength tunable ultrahsort pulse source
Spectral functions of the Falicov-Kimball model with electronic ferroelectricity
We calculate the angular resolved photoemission spectrum of the
Falicov-Kimball model with electronic ferroelectricity where - and
-electrons have different hoppings. In mix-valence regimes, the presence of
strong scattering processes between - excitons and a hole, created by
emission of an electron, leads to the formation of pseudospin polarons and
novel electronic structures with bandwidth scaling with that of -
excitons. Especially, in the two-dimensional case, we find that flat regions
exist near the bottom of the quasiparticle band in a wide range of the - and
-level energy difference.Comment: 5 pages, 5 figure
Resonant cancellation of off-resonant effects in a multilevel qubit
Off-resonant effects are a significant source of error in quantum
computation. This paper presents a group theoretic proof that off-resonant
transitions to the higher levels of a multilevel qubit can be completely
prevented in principle. This result can be generalized to prevent unwanted
transitions due to qubit-qubit interactions. A simple scheme exploiting dynamic
pulse control techniques is presented that can cancel transitions to higher
states to arbitrary accuracy.Comment: 4 pages, Revtex, submitted for publicatio
Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems
We propose an experimentally feasible scheme to achieve quantum computation
based on a pair of orthogonal cyclic states. In this scheme, quantum gates can
be implemented based on the total phase accumulated in cyclic evolutions. In
particular, geometric quantum computation may be achieved by eliminating the
dynamic phase accumulated in the whole evolution. Therefore, both dynamic and
geometric operations for quantum computation are workable in the present
theory. Physical implementation of this set of gates is designed for NMR
systems. Also interestingly, we show that a set of universal geometric quantum
gates in NMR systems may be realized in one cycle by simply choosing specific
parameters of the external rotating magnetic fields. In addition, we
demonstrate explicitly a multiloop method to remove the dynamic phase in
geometric quantum gates. Our results may provide useful information for the
experimental implementation of quantum logical gates.Comment: 9 pages, language revised, the publication versio
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
The price of rapid exit in venture capital-backed IPOs
This paper proposes an explanation for two empirical puzzles surrounding initial public offerings (IPOs). Firstly, it is well documented that IPO underpricing increases during “hot issue” periods. Secondly, venture capital (VC) backed IPOs are less underpriced than non-venture capital backed IPOs during normal periods of activity, but the reverse is true during hot issue periods: VC backed IPOs are more underpriced than non-VC backed ones. This paper shows that when IPOs are driven by the initial investor’s desire to exit from an existing investment in order to finance a new venture, both the value of the new venture and the value of the existing firm to be sold in the IPO drive the investor’s choice of price and fraction of shares sold in the IPO. When this is the case, the availability of attractive new ventures increases equilibrium underpricing, which is what we observe during hot issue periods. Moreover, I show that underpricing is affected by the severity of the moral hazard problem between an investor and the firm’s manager. In the presence of a moral hazard problem the degree of equilibrium underpricing is more sensitive to changes in the value of the new venture. This can explain why venture capitalists, who often finance firms with more severe moral hazard problems, underprice IPOs less in normal periods, but underprice more strongly during hot issue periods. Further empirical implications relating the fraction of shares sold and the degree of underpricing are presented
Electroactive biofilms: new means for electrochemistry
This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on
electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with
stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In
most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to
biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy
showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative
correlation between biofilm morphology and current was established. In compost, the oxidation process was
investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was
demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few
days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and
seawaters that have been predominantly investigated until now, may be able to produce electrochemically active
biofilm
- …
