12 research outputs found
Anisotropic Enhancement of Superconductivity in Heavy-Ion Irradiated KBa BiO3
International audienceWe have measured the specific heat, resistivity, and ac susceptibility of K; Ba BiO3 single crystals before and after introduction of either point or columnar defects by electron (EI) or heavy-ion irradiation (HII).While the magnetic field dependence of these properties remains mainly unaffected by EI, the irreversibility line and the location of the specific heat anomaly are both shifted up in temperature after HII. The shift is apparent only if the magnetic field is applied parallel to the ion tracks. For perpendicularly applied fields, both lines lie at the same field as in the pristine sample. These experiments call the nature of the vortex liquid state into question
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Evidence for LineLike Vortex Liquid Phase in TlBaCaCuO Probed by the Josephson Plasma Resonance
We measured the Josephson plasma resonance (JPR) in optimally doped
TlBaCaCuO thin films using terahertz time-domain
spectroscopy in transmission. The temperature and magnetic field dependence of
the JPR frequency shows that the c-axis correlations of pancake vortices remain
intact at the transition from the vortex solid to the liquid phase. In this
respect TlBaCaCuO films, withanisotropy parameter
, are similar to the less anisotropic
YBaCuO rather than to the most
anisotropic BiSrCaCuO single crystals ).Comment: Submitted to Physical Review Letter
Suppression of the vortex glass transition due to correlated defects with a persistent direction perpendicular to an applied magnetic field
It is found on the basis of the lowest Landau level approach for the
Ginzburg-Landau model that, in bulk type II superconductors with strong line
disorder directed {\it perpendicularly} to an applied field, the continuous
vortex-glass transition is depressed to the low limit in the limit of weak
{\it point} disorder. An anomalous resistive broadening in twin-free YBCO with
columnar defects in a field parallel to the layers is discussed based on this
theoretical finding. Other phenomena which, we argue, arise indirectly from
this mechanism in type II superconductors including correlated defects are also
discussed.Comment: 5 pages, 3 figures, Fig.2 and text were modified. To appear in Phys.
Rev. B (Rapid Comunication
The effect of disorder on the critical points in the vortex phase diagram of YBCO
The effect of line disorder induced by heavy ion irradiation and of point disorder induced by proton and electron irradiation on the upper and lower critical points in the vortex phase diagram of YBCO is presented. The authors find that dilute line disorder induces a Bose glass transition at low fields which is replaced at the lower critical point by first order melting at higher fields. Strong pinning point defects raise the lower critical point, while weak pinning point defects have little or no effect on the lower critical point. The upper critical point is lowered by point disorder, but raised by line disorder. First order melting is suppressed by point disorder in two ways, by lowering of the upper critical point only for weak point pins, or by merging of the upper and lower critical points for strong point pins. The differing responses of the upper and lower critical points to line and point disorder can be understood in a picture of transverse and longitudinal spatial fluctuations
