24 research outputs found
A differential identity for Green functions
If P is a differential operator with constant coefficients, an identity is
derived to calculate the action of exp(P) on the product of two functions. In
many-body theory, P describes the interaction Hamiltonian and the identity
yields a hierarchy of Green functions. The identity is first derived for scalar
fields and the standard hierarchy is recovered. Then the case of fermions is
considered and the identity is used to calculate the generating function for
the Green functions of an electron system in a time-dependent external
potential.Comment: 14 page
Dispersion of the dielectric function of a charge-transfer insulator
We study the problem of dielectric response in the strong coupling regime of
a charge transfer insulator. The frequency and wave number dependence of the
dielectric function and its inverse is the main object of consideration. We show that the
problem, in general, cannot be reduced to a calculation within the Hubbard
model, which takes into account only a restricted number of electronic states
near the Fermi energy. The contribution of the rest of the system to the
longitudinal response (i.e. to ) is essential
for the whole frequency range. With the use of the spectral representation of
the two-particle Green's function we show that the problem may be divided into
two parts: into the contributions of the weakly correlated and the Hubbard
subsystems. For the latter we propose an approach that starts from the
correlated paramagnetic ground state with strong antiferromagnetic
fluctuations. We obtain a set of coupled equations of motion for the
two-particle Green's function that may be solved by means of the projection
technique. The solution is expressed by a two particle basis that includes the
excitonic states with electron and hole separated at various distances. We
apply our method to the multiband Hubbard (Emery) model that describes layered
cuprates. We show that strongly dispersive branches exist in the excitonic
spectrum of the 'minimal' Emery model () and consider the
dependence of the spectrum on finite oxygen hopping and on-site
repulsion . The relationship of our calculations to electron energy loss
spectroscopy is discussed.Comment: 22 pages, 5 figure
The Phonon Drag Effect in Single-Walled Carbon Nanotubes
A variational solution of the coupled electron-phonon Boltzmann equations is
used to calculate the phonon drag contribution to the thermopower in a 1-D
system. A simple formula is derived for the temperature dependence of the
phonon drag in metallic, single-walled carbon nanotubes. Scattering between
different electronic bands yields nonzero values for the phonon drag as the
Fermi level varies.Comment: 8 pages, 4 figure
Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach
We present a method for computing optical absorption spectra by means of a
Bethe-Salpeter equation approach, which is based on a conserving linear
response calculation for electron-hole coherences in the presence of an
external electromagnetic field. This procedure allows, in principle, for the
determination of the electron-hole correlation function self-consistently with
the corresponding single-particle Green function. We analyze the general
approach for a "one-shot" calculation of the photoabsorption cross section of
finite systems, and discuss the importance of scattering and dephasing
contributions in this approach. We apply the method to the closed-shell
clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure
Electronic structure of fluorides: general trends for ground and excited state properties
The electronic structure of fluorite crystals are studied by means of density
functional theory within the local density approximation for the exchange
correlation energy. The ground-state electronic properties, which have been
calculated for the cubic structures ,, , ,
, -, using a plane waves expansion of the wave
functions, show good comparison with existing experimental data and previous
theoretical results. The electronic density of states at the gap region for all
the compounds and their energy-band structure have been calculated and compared
with the existing data in the literature. General trends for the ground-state
parameters, the electronic energy-bands and transition energies for all the
fluorides considered are given and discussed in details. Moreover, for the
first time results for have been presented
Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy
Applications based on Single Walled Carbon Nanotube (SWNT) are good example
of the great need to continuously develop metrology methods in the field of
nanotechnology. Contact and interface properties are key parameters that
determine the efficiency of SWNT functionalized nanomaterials and nanodevices.
In this work we have taken advantage of a good control of the SWNT growth
processes at an atomic force microscope (AFM) tip apex and the use of a low
noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT
touching a surface. By simultaneously recording static and dynamic properties
of SWNT, we show that the contact corresponds to a peeling geometry, and
extract quantities such as adhesion energy per unit length, curvature and
bending rigidity of the nanotube. A complete picture of the local shape of the
SWNT and its mechanical behavior is provided
Current-Density Functional Theory of the Response of Solids
The response of an extended periodic system to a homogeneous field (of
wave-vector ) cannot be obtained from a time-dependent density
functional theory (TDDFT) calculation, because the
Runge-Gross theorem does not apply. Time-dependent {\em current}-density
functional theory is needed and demonstrates that one key ingredient missing
from TDDFT is the macroscopic current. In the low-frequency limit, in certain
cases, density polarization functional theory is recovered and a formally exact
expression for the polarization functional is given.Comment: 5 pages, accepted in PR
Acoustic phonon exchange, attractive interactions, and the Wentzel-Bardeen singularity in single-wall nanotubes
We derive the effective low-energy theory for interacting electrons in
metallic single-wall carbon nanotubes taking into account acoustic phonon
exchange within a continuum elastic description. In many cases, the nanotube
can be described as a standard Luttinger liquid with possibly attractive
interactions. We predict surprisingly strong attractive interactions for thin
nanotubes. Once the tube radius reaches a critical value \AA, the Wentzel-Bardeen singularity is approached, accompanied by strong
superconducting fluctuations. The surprisingly large indicates that this
singularity could be reached experimentally. We also discuss the conditions for
a Peierls transition due to acoustic phonons.Comment: 11 pages, 2 figures, final version to be published in Phys. Rev.
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
