16 research outputs found

    Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

    Get PDF
    Background: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an `autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. Conclusions: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi

    mRECIST criteria to assess recurrent thyroid carcinoma treatment response after radiofrequency ablation: a prospective study

    No full text
    Purpose: Surgical removal is recommended for recurrent thyroid carcinomas (RTCs) unable to uptake radioiodine and/or not responsive to chemotherapy. However, repeated neck dissection is difficult for surgeons. Thus, radiofrequency ablation (RFA) was proposed for RTCs. The aim of this prospective study is to assess RTC treatment response after RFA, according to well-established criteria. Methods: Sixteen lesions in 13 patients were treated by RFA. All patients refused/were excluded from repeated surgery or other conventional therapy. CT and US examinations were performed before RFA to evaluate lesion volume and vascularization. All RFA procedures were performed under US-guidance by an 18-gauge, electrode. Treatment response was evaluated by CT, according to RECIST 1.1 and to mRECIST guidelines; CT examinations were performed during follow-up (6–18 months); the volume of residual vital tumour tissue and the percentage of necrotic tissue were estimated by contrast enhanced CT. Results: RFA was well tolerated by all patients; in two cases laryngeal nerve paralysis was observed. Mean pre-treatment volume was 4.18 ± 3.53 ml. Vital tumour tissue and percentage of necrosis at 6, 12 and 18 months were 0.18 ± 0.25, 0.11 ± 0.13, 0.29 ± 0.40 ml and 91.9 ± 11.1, 90.4 ± 13.3, 80.8 ± 23.1%. According to RECIST 1.1, target lesion response was classified as complete response (CR) in one case, partial response (PR) in 11/16, stable disease in 4/16 cases. According to mRECIST, 11/16 cases were classified as CR and the remaining 5 as PR. Conclusion: RFA is a safe procedure to treat the viable tumour tissue and to reduce the RTC volume; as to the criteria to assess treatment response, mRECIST appears to be more accurate

    Vascular Alterations in Mental Disorders: Focus in Angiotensin II Role

    No full text
    Mental disorders have high prevalence and long duration, affecting the quality of life and generating elevated economic costs in public health. Approximately 25% of population worldwide will develop any mental illness at some moment of its lifetime. These disorders are the result of complex processes involving the interaction of many pathological changes. Although, each psychiatric disease has well-defined characteristics, some of their neurobiological processes, like inflammation and vascular alterations, seem to be common. Since microvasculature is involved in essential functions as oxygen delivery, waste product removal, and transvascular exchange, any brain vessel alteration could promote a pathological state. In this sense, capillary ultrastructural abnormalities, deficient perfusion, and blood-brain barrier disruption have been described in schizophrenia, depression, and Parkinson?s and Alzheimer?s diseases. These vascular dysfunctions could be related to angiogenic factor deregulations. The abovementioned evidences point out to evaluate the vasculature as a future pharmacological target for the treatment of mental disorders. Among the several factors involved in the regulation of angiogenesis, this chapter will focus on the upstream angiogenic mediator Angiotensin II. This peptide is produced at peripheral and brain level and exerts its principal effects acting through AT1 receptors. Considering that the available treatments for mental illnesses have low efficacy and high incidence of side effects, new pharmacological tools become necessary. The present chapter will be focused in the evidences that support Angiotensin II as a key factor in the understanding and therapy of these pathologies.Fil: Delgado Marín, Leticia Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Basmadjian, Osvaldo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Occhieppo, Victoria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Marchese, Natalia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Bregonzio Diaz, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Baiardi, Gustavo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
    corecore