6,486 research outputs found
Recommended from our members
La constitution d'un "problème public" : la controverse sur les OGM et ses incidences sur la politique publique aux Etats-Unis
Ce rapport présente une analyse de la mobilisation sur les organismes génétiquement modifiés (OGM) aux Etats-Unis entre mai 1998 et juillet 2000. Les auteurs commencent par une analyse critique des sondages utilisés pour pouvoir soutenir l'argument selon lequel les consommateurs américains auraient accepté les OGM. Puis ils présentent de façon plus détaillée le cadre théorique d'analyse et les matériaux et méthodes utilisés. L'analyse de la controverse se décline en trois parties. Il s'agit d'abord d'une analyse chronologique et évènementielle. Cette première approche permet d'identifier trois épreuves principales qui jouent un rôle essentiel dans le débat public, en termes de mobilisation, de cadrage et de confrontation concernant la définition des politiques publiques : l'épreuve de l'étiquetage, l'épreuve de la réglementation des plantes résistantes aux insectes qui se noue autour de la controverse sur le" monarque", et l'épreuve de la technologie "Terminator".
French
Fluctuation induced hopping and spin polaron transport
We study the motion of free magnetic polarons in a paramagnetic background of
fluctuating local moments. The polaron can tunnel only to nearby regions of
local moments when these fluctuate into alignment. We propose this fluctuation
induced hopping as a new transport mechanism for the spin polaron. We calculate
the diffusion constant for fluctuation induced hopping from the rate at which
local moments fluctuate into alignment. The electrical resistivity is then
obtained via the Einstein relation. We suggest that the proposed transport
mechanism is relevant in the high temperature phase of the Mn pyrochlore
colossal magneto resistance compounds and Europium hexaboride.Comment: 8 pages, 3 figure
Theory of Luminescence Spectra of High-Density Electron-Hole Systems: Crossover from Excitonic Bose-Einstein Condenstation to Electron-Hole BCS State
We present a unified theory of luminescence spectra for highly excited
semiconductors, which is applicable both to the electron-hole BCS state and to
the exciton Bose-Einstein condensate. The crossover behavior between
electron-hole BCS state and exciton Bose-Einstein condensate clearly manifests
itself in the calculated luminescence spectra. The analysis is based on the
Bethe-Salpeter equation combined with the generalized
random-phase-approximation, which enables us to consider the multiple Coulomb
scattering and the quantum fluctuation associated with the center-of-mass
motion of electron-hole pairs. In the crossover regime, the calculated spectra
are essentially different from results obtained by the BCS-like mean-field
theory and the interacting Boson model. In particular, it is found that the
broad spectrum, arising from the recombination of electron-hole BCS state,
splits into the P- and P_2-luminescence bands with decreasing the particle
density. The dependence of these bands on the carrier density is in good
agreement with experiments for highly excited semiconductors.Comment: 9 pages, 4 figures, To appear in Solid State Communication
First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As
The properties of diluted GaMnAs are calculated for a wide range
of Mn concentrations within the local spin density approximation of density
functional theory. M\"ulliken population analyses and orbital-resolved
densities of states show that the configuration of Mn in GaAs is compatible
with either 3d or 3d, however the occupation is not integer due to the
large - hybridization between the Mn states and the valence band of
GaAs. The spin splitting of the conduction band of GaAs has a mean field-like
linear variation with the Mn concentration and indicates ferromagnetic coupling
with the Mn ions. In contrast the valence band is antiferromagnetically coupled
with the Mn impurities and the spin splitting is not linearly dependent on the
Mn concentration. This suggests that the mean field approximation breaks down
in the case of Mn-doped GaAs and corrections due to multiple scattering must be
considered. We calculate these corrections within a simple free electron model
and find good agreement with our {\it ab initio} results if a large exchange
constant (eV) is assumed.Comment: 15 pages, 14 figure
Stability and dynamics of free magnetic polarons
The stability and dynamics of a free magnetic polaron are studied by Monte
Carlo simulation of a classical two-dimensional Heisenberg model coupled to a
single electron. We compare our results to the earlier mean-field analysis of
the stability of the polaron, finding qualitative similarity but quantitative
differences. The dynamical simulations give estimates of the temperature
dependence of the polaron diffusion, as well as a crossover to a tunnelling
regime.Comment: 4 pages including 4 .eps figure
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
We present the results of the first test plates of the extended Baryon
Oscillation Spectroscopic Survey. This paper focuses on the emission line
galaxies (ELG) population targetted from the Dark Energy Survey (DES)
photometry. We analyse the success rate, efficiency, redshift distribution, and
clustering properties of the targets. From the 9000 spectroscopic redshifts
targetted, 4600 have been selected from the DES photometry. The total success
rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a
bright and faint, on average more distant, samples including redshifts measured
from a single strong emission line. We find a mean redshift of 0.8 and 0.87,
with 15 and 13\% of unknown redshifts respectively for the bright and faint
samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic
redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9
respectively. Star contamination is lower than 2\%. We measure a galaxy bias
averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and
of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been
obtained propagating the errors in the correlation function to the fitted
parameters. This redshift evolution for the galaxy bias is in agreement with
theoretical expectations for a galaxy population with MB-5\log h < -21.0. We
note that biasing is derived from the galaxy clustering relative to a model for
the mass fluctuations. We investigate the quality of the DES photometric
redshifts and find that the outlier fraction can be reduced using a comparison
between template fitting and neural network, or using a random forest
algorithm
All Optical Implementation of Multi-Spin Entanglement in a Semiconductor Quantum Well
We use ultrafast optical pulses and coherent techniques to create spin
entangled states of non-interacting electrons bound to donors (at least three)
and at least two Mn2+ ions in a CdTe quantum well. Our method, relying on the
exchange interaction between localized excitons and paramagnetic impurities,
can in principle be applied to entangle a large number of spins.Comment: 17 pages, 3 figure
The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms
© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
Many-body theory of pump-probe spectra for highly excited semiconductors
We present a unified theory for pump-probe spectra in highly excited
semiconductors, which is applicable throughout the whole density regime
including the high-density electron-hole BCS state and the low-density
excitonic Bose-Einstein condensate (BEC). The analysis is based on the BCS-like
pairing theory combined with the Bethe-Salpeter (BS) equation, which first
enables us to incorporate the state-filling effect, the band-gap
renormalization and the strong/weak electron-hole pair correlations in a
unified manner. We show that the electron-hole BCS state is distinctly
stabilized by the intense pump-light, and this result strongly suggests that
the macroscopic quantum state can be observed under the strong photoexcitation.
The calculated spectra considerably deviate from results given by the BCS-like
mean field theory and the simple BS equation without electron-hole pair
correlation especially in the intermediate density states between the
electron-hole BCS state and the excitonic BEC state. In particular, we find the
sharp stimulated emission and absorption lines which originate from the optical
transition accompanied by the collective phase fluctuation mode in the
electron-hole BCS state. From the pump-probe spectral viewpoint, we show that
this fluctuation mode changes to the exciton mode with decreasing carrier
densityComment: RevTeX 11 pages, 10 figures. To appear in Phys.Rev.B1
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
- …
