4,685 research outputs found
A weakly correlated Fermi liquid state with a small Fermi surface in lightly doped SrIrO
We characterize the electron doping evolution of
(SrLa)IrO by means of angle-resolved photoemission.
Concomitant with the metal insulator transition around we find
the emergence of coherent quasiparticle states forming a closed small Fermi
surface of volume , where is the independently measured La
concentration. The quasiparticle weight remains large along the entire
Fermi surface, consistent with the moderate renormalization of the low-energy
dispersion. This indicates a conventional, weakly correlated Fermi liquid state
with a momentum independent residue in lightly doped
SrIrO$_7&.Comment: 5 pages, 4 figure
Conception of a 3D Metamaterial-Based Foundation for Static and Seismic Protection of Fuel Storage Tanks
Fluid-filled tanks in tank farms of industrial plants can experience severe damage and trigger cascading effects in neighboring tanks due to large vibrations induced by strong earthquakes. In order to reduce these tank vibrations, we have explored an innovative type of foundation based on metamaterial concepts. Metamaterials are generally regarded as manmade structures that exhibit unusual responses not readily observed in natural materials. If properly designed, they are able to stop or attenuate wave propagation. Recent studies have shown that if locally resonant structures are periodically placed in a matrix material, the resulting metamaterial forms a phononic lattice that creates a stop band able to forbid elastic wave propagation within a selected band gap frequency range. Conventional phononic lattice structures need huge unit cells for low-frequency vibration shielding, while locally resonant metamaterials can rely on lattice constants much smaller than the longitudinal wavelengths of propagating waves. Along this line, we have investigated 3D structured foundations with effective attenuation zones conceived as vibration isolation systems for storage tanks. In particular, the three-component periodic foundation cell has been developed using two common construction materials, namely concrete and rubber. Relevant frequency band gaps, computed using the Floquet–Bloch theorem, have been found to be wide and in the low-frequency region. Based on the designed unit cell, a finite foundation has been conceived, checked under static loads and numerically tested on its wave attenuation properties. Then, by means of a parametric study we found a favorable correlation between the shear stiffness of foundation walls and wave attenuation. On this basis, to show the potential improvements of this foundation, we investigated an optimized design by means of analytical models and numerical analyses. In addition, we investigated the influence of cracks in the matrix material on the elastic wave propagation, and by comparing the dispersion curves of the cracked and uncracked materials we found that small cracks have a negligible influence on dispersive properties. Finally, harmonic analysis results displayed that the conceived smart foundations can effectively isolate storage tanks
FORMAÇÃO ACADÊMICA DOS DOCENTES DE MARKETING DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DAS UNIVERSIDADES FEDERAL DO BRASIL
O artigo aborda a formação acadêmica dos docentes da linha de pesquisa em marketing, dos Programas de Pós-graduação em Administração de Universidades Pública Federal do Brasil, isto é, Instituições Federais de Ensino Superior (IFES). O estudo foi realizado de maio a julho de 2015. A análise exploratória da Grande Área do Curso de Administração (CNPq, 2015) indicou 63 IFES, sendo que 26 têm Pós-graduação Acadêmica em Administração, mas apenas 8 com a linha de marketing, totalizando 58 docentes. Os dados destes 58 docentes ou censo foram obtidos do Currículo Lattes (CNPq, 2015). Assim, o público-alvo do Survey (AAKER, 2001; MALHOTRA, 2001) foram somente os docentes de Pós-graduação stricto sensu, classificado de 4 a 7 (CAPES, 2015). O tratamento dos dados foi qualitativo com análise descritiva. Constatou-se que 50% dos pesquisados são graduados em administração e, 65% estudaram em IFES. As Pós-Graduações em Administração da UFRJ, UFMG, UFRGS, UFPE e USP (Universidade Pública Estadual) destacam-se na formação de mestre e/ou doutor em Administração que lecionam marketing. Durante o doutorado alguns fizeram Sanduiche e/ou Pós-Doutorado no exterior: USA, UK, ES, FR, JP, PT. Concluiu-se que há a concentração da formação dos docentes de marketing em IFES nas Regiões Sudeste e Sul do Brasil
Symmetry breaking orbital anisotropy on detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition
Nematicity, defined as broken rotational symmetry, has recently been observed
in competing phases proximate to the superconducting phase in the cuprate high
temperature superconductors. Similarly, the new iron-based high temperature
superconductors exhibit a tetragonal to orthorhombic structural transition
(i.e. a broken C4 symmetry) that either precedes or is coincident with a
collinear spin density wave (SDW) transition in undoped parent compounds, and
superconductivity arises when both transitions are suppressed via doping.
Evidence for strong in-plane anisotropy in the SDW state in this family of
compounds has been reported by neutron scattering, scanning tunneling
microscopy, and transport measurements. Here we present an angle resolved
photoemission spectroscopy study of detwinned single crystals of a
representative family of electron-doped iron-arsenide superconductors,
Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via
application of in-plane uniaxial stress, enabling measurements of single domain
electronic structure in the orthorhombic state. At low temperatures, our
results clearly demonstrate an in-plane electronic anisotropy characterized by
a large energy splitting of two orthogonal bands with dominant dxz and dyz
character, which is consistent with anisotropy observed by other probes. For
compositions x>0, for which the structural transition (TS) precedes the
magnetic transition (TSDW), an anisotropic splitting is observed to develop
above TSDW, indicating that it is specifically associated with TS. For
unstressed crystals, the band splitting is observed close to TS, whereas for
stressed crystals the splitting is observed to considerably higher
temperatures, revealing the presence of a surprisingly large in-plane nematic
susceptibility in the electronic structure.Comment: final version published in PNAS, including supplementary informatio
Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis
Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products
Tariff-Mediated Network Effects versus Strategic Discounting: Evidence from German Mobile Telecommunications
Mobile telecommunication operators routinely charge subscribers lower prices for calls on their own network than for calls to other networks (on-net discounts). Studies on tariff-mediated network effects suggest this is due to large operators using on-net discounts to damage smaller rivals. Alternatively, research on strategic discounting suggests small operators use on-net discounts to advertise with low on-net prices. We test the relative strength of these effects using data on tariff setting in German mobile telecommunications between 2001 and 2009. We find that large operators are more likely to offer tariffs with on-net discounts but there is no consistently significant difference in the magnitude of discounts. Our results suggest that tariff-mediated network effects are the main cause of on-net discounts
A Fokker-Planck formalism for diffusion with finite increments and absorbing boundaries
Gaussian white noise is frequently used to model fluctuations in physical
systems. In Fokker-Planck theory, this leads to a vanishing probability density
near the absorbing boundary of threshold models. Here we derive the boundary
condition for the stationary density of a first-order stochastic differential
equation for additive finite-grained Poisson noise and show that the response
properties of threshold units are qualitatively altered. Applied to the
integrate-and-fire neuron model, the response turns out to be instantaneous
rather than exhibiting low-pass characteristics, highly non-linear, and
asymmetric for excitation and inhibition. The novel mechanism is exhibited on
the network level and is a generic property of pulse-coupled systems of
threshold units.Comment: Consists of two parts: main article (3 figures) plus supplementary
text (3 extra figures
Standard methods for molecular research in Apis mellifera
From studies of behaviour, chemical communication, genomics and developmental biology, among many others, honey bees have long been a key organism for fundamental breakthroughs in biology. With a genome sequence in hand, and much improved genetic tools, honey bees are now an even more appealing target for answering the major questions of evolutionary biology, population structure, and social organization. At the same time, agricultural incentives to understand how honey bees fall prey to disease, or evade and survive their many pests and pathogens, have pushed for a genetic understanding of individual and social immunity in this species. Below we describe and reference tools for using modern molecular-biology techniques to understand bee behaviour, health, and other aspects of their biology. We focus on DNA and RNA techniques, largely because techniques for assessing bee proteins are covered in detail in Hartfelder et al. (2013). We cover practical needs for bee sampling, transport, and storage, and then discuss a range of current techniques for genetic analysis. We then provide a roadmap for genomic resources and methods for studying bees, followed by specific statistical protocols for population genetics, quantitative genetics, and phylogenetics. Finally, we end with three important tools for predicting gene regulation and function in honey bees: Fluorescence in situ hybridization (FISH), RNA interference (RNAi), and the estimation of chromosomal methylation and its role in epigenetic gene regulation.Fundação para a Ciência e Tecnologi
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
- …
