1,088 research outputs found
Technology challenges for space interferometry: the option of mid-infrared integrated optics
Nulling interferometry is a technique providing high angular resolution which
is the core of the space missions Darwin and the Terrestrail Planet Finder. The
first objective is to reach a deep degree of starlight cancelation in the range
6 -- 20 microns, in order to observe and to characterize the signal from an
Earth-like planet. Among the numerous technological challenges involved in
these missions, the question of the beam combination and wavefront filtering
has an important place. A single-mode integrated optics (IO) beam combiner
could support both the functions of filtering and the interferometric
combination, simplifying the instrumental design. Such a perspective has been
explored in this work within the project Integrated Optics for Darwin (IODA),
which aims at developing a first IO combiner in the mid-infrared. The solutions
reviewed here to manufacture the combiner are based on infrared dielectric
materials on one side, and on metallic conductive waveguides on the other side.
With this work, additional inputs are offered to pursue the investigation on
mid-infrared photonics devices.Comment: Accepted in Adv. in Space Researc
Mid-infrared laser light nulling experiment using single-mode conductive waveguides
Aims: In the context of space interferometry missions devoted to the search
of exo-Earths, this paper investigates the capabilities of new single mode
conductive waveguides at providing modal filtering in an infrared and
monochromatic nulling experiment; Methods: A Michelson laser interferometer
with a co-axial beam combination scheme at 10.6 microns is used. After
introducing a Pi phase shift using a translating mirror, dynamic and static
measurements of the nulling ratio are performed in the two cases where modal
filtering is implemented and suppressed. No additional active control of the
wavefront errors is involved. Results: We achieve on average a statistical
nulling ratio of 2.5e-4 with a 1-sigma upper limit of 6e-4, while a best null
of 5.6e-5 is obtained in static mode. At the moment, the impact of external
vibrations limits our ability to maintain the null to 10 to 20 seconds.;
Conclusions: A positive effect of SM conductive waveguide on modal filtering
has been observed in this study. Further improvement of the null should be
possible with proper mechanical isolation of the setup.Comment: Accepted in A&A, 7 pages, 5 figure
Transmission measurement at 10.6 microns of Te2As3Se5 rib-waveguides on As2S3 substrate
The feasibility of chalcogenide rib waveguides working at lambda = 10.6
microns has been demonstrated. The waveguides comprised a several microns thick
Te2As3Se5 film deposited by thermal evaporation on a polished As2S3 glass
substrate and further etched by physical etching in Ar or CF4/O2 atmosphere.
Output images at 10.6 microns and some propagation losses roughly estimated at
10dB/cm proved that the obtained structures behaved as channel waveguides with
a good lateral confinement of the light. The work opens the doors to the
realisation of components able to work in the mid and thermal infrared up to 20
microns and even more.Comment: The following article appeared in Vigreux-Bercovici et al., Appl.
Phys. Lett. 90, 011110 (2007) and may be found at
http://link.aip.org/link/?apl/90/01111
MOBSTER – III. HD 62658: a magnetic Bp star in an eclipsing binary with a non-magnetic ‘identical twin’
HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as out-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M_⊙. The primary’s longitudinal magnetic field〈B_z〉 varies between about +100 and −250 G, suggesting a surface magnetic dipole strength B_d = 850 G. Bayesian analysis of the Stokes V profiles indicates B_d = 650 G for the primary and B_d < 110 G for the secondary. The primary’s line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that star’s chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete
The significance of sample mass in the analysis of steroid estrogens in sewage sludges and the derivation of partition coefficients in wastewaters
Optimization of an analytical method for determination of steroid estrogens, through minimizing sample size, resulted in recoveries >84%, with relative standard deviations <3% and demonstrated the significance of sample size on method performance. Limits of detection were 2.1–5.3 ng/g. Primary sludges had estrogen concentrations of up to one order of magnitude less than those found in biological sludges (up to 994 ng/g). However, partition coefficients were higher in primary sludges (except estriol), with the most hydrophobic compound (ethinylestradiol) exhibiting the highest Kp value, information which may be of value to those involved in modeling removal during wastewater treatment
KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396
We report the discovery of a transiting exoplanet, KELT-11b, orbiting the
bright () subgiant HD 93396. A global analysis of the system shows that
the host star is an evolved subgiant star with K,
, , log , and [Fe/H].
The planet is a low-mass gas giant in a day orbit,
with , , g cm, surface gravity log , and equilibrium temperature K. KELT-11 is the brightest known transiting exoplanet host
in the southern hemisphere by more than a magnitude, and is the 6th brightest
transit host to date. The planet is one of the most inflated planets known,
with an exceptionally large atmospheric scale height (2763 km), and an
associated size of the expected atmospheric transmission signal of 5.6%. These
attributes make the KELT-11 system a valuable target for follow-up and
atmospheric characterization, and it promises to become one of the benchmark
systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal
KELT-18b: Puffy Planet, Hot Host, Probably Perturbed
We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system
A Giant Planet Undergoing Extreme-Ultraviolet Irradiation By Its Hot Massive-Star Host
The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside2, and is highly inflated–traits that have been linked to high insolation3,4. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star (ref. 6)
- …
