23 research outputs found
Low potency toxins reveal dense interaction networks in metabolism
Background
The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs.
Results
Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function.
Conclusions
The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
A population-based case-control study of Selective Serotonin Reuptake Inhibitors (SSRIs) and breast cancer: The impact of duration of use, cumulative dose and latency
H4 Histamine Receptors Mediate Cell Cycle Arrest in Growth Factor-Induced Murine and Human Hematopoietic Progenitor Cells
The most recently characterized H4 histamine receptor (H4R) is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs
Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway
Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 5′-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters
Characterization of nitrobenzylthioinosine binding to nucleoside transport sites selective for adenosine in rat brain
Nucleoside transport sites in rat brain membrane preparations were labeled with [3H]nitrobenzylthioinosine ([3H] NBI), a potent inhibitor of nucleoside transport systems. The membranes contained a single class of very high affinity binding sites with KD and Bmax values of 0.06 nM and 147 fmol/mg of protein, respectively. The displacement of [3H]NBI binding by various nucleosides, adenosine receptor agonists and antagonists, and known nucleoside transport inhibitors was examined. The Ki values (micromolar concentration) of [3H]NBI displacement by the nucleosides tested were: adenosine, 3.0; inosine, 160; thymidine, 240; uridine, 390; guanosine, 460; and cytidine, 1000. These nucleosides displayed parallel displacement curves indicating their interaction with a common site labeled by [3H]NBI. The nucleobases, hypoxanthine and adenine, exhibited Ki values of 220 and 3640 microM, respectively. Adenosine receptor agonists exhibited moderate affinities for the [3H]NBI site, whereas the adenosine receptor antagonists, caffeine, theophylline, and enprofylline, were ineffective displacers. The Ki values for cyclohexyladenosine, (+)- and (-)-phenylisopropyladenosine, 2-chloroadenosine, and adenosine 5′-ethylcarboxamide were 0.8, 0.9, 2.6, 12, and 54 microM, respectively. These affinities and the rank order of potencies indicate that [3H]NBI does not label any known class of adenosine receptors (i.e., A1, A2, and P). The Ki values of other nucleoside transport inhibitors were: nitrobenzylthioguanosine, 0.05 nM; dipyridamole, 16 nM; papaverine, 3 microM; and 2′-deoxyadenosine, 22 microM. These results indicate that [3H]NBI binds to a nucleoside transporter in brain which specifically recognizes adenosine as its preferred endogenous substrate. This ligand may aid in the identification of CNS neural systems that selectively accumulate adenosine and thereby control “adenosinergic” function.</jats:p
