9,323 research outputs found
To what extent would the poorest consumers nutritionally and socially benefit from a global food tax and subsidy reform ? A framed field experiment based on daily food intake
In this paper we propose a new method in experimental economics, designed to evaluate the effectiveness of public policy incentives aimed at altering consumer behaviors. We apply this method to wide-ranging policies on food prices, which use subsidies to increase the consumption of healthy products and taxes to reduce that of unhealthy ones. Our protocol allows for observation of an individual’s daily food consumption before and after the policy. We examine two separate policies: the one subsidizes fruit and vegetables, while the other one combines taxes and subsidies. We measure their nutritional and economic impacts on the choices of low-income French consumers, compared to a reference group. Both policies have a positive effect on the nutritional quality of food choices of the two groups but initial gaps widen, especially with the subsidies. In the low-income group this can be explained by an initially unfavorable pattern and by weaker price elasticities. The redistributive effects are therefore doubly regressive. Moreover, the individual price elasticities, that the experimental approach enables us to measure, show widely diverse behaviors. They are counter-effective for close to 40% of our sample of poor women.OBESITY;PUBLIC POLICY;SOCIAL INEQUALITIES;POVERTY;INCOME REDISTRIBUTION;REGRESSIVE TAX;INDIVIDUALIZED PRICE INDEX;NUTRITIONAL TAX SYSTEM;FOOD TAX
Nucleon exchange in heavy-ion collisions within stochastic mean-field approach
Nucleon exchange mechanism is investigated in deep-inelastic symmetric
heavy-ion collisions in the basis of the Stochastic Mean-Field approach. By
extending the previous work to off-central collisions, analytical expression is
deduced for diffusion coefficient of nucleon exchange mechanism. Numerical
calculations are carried out for Ca + Ca and Zr +
Zr systems and the results are compared with the phenomenological
nucleon exchange model. Also, calculations are compared with the available
experimental results of deep-inelastic collisions between calcium nuclei.Comment: 8 pages, 7 figure
Voltage induced control and magnetoresistance of noncollinear frustrated magnets
Noncollinear frustrated magnets are proposed as a new class of spintronic
materials with high magnetoresistance which can be controlled with relatively
small applied voltages. It is demonstrated that their magnetic configuration
strongly depends on position of the Fermi energy and applied voltage. The
voltage induced control of noncollinear frustrated materials (VCFM) can be seen
as a way to intrinsic control of colossal magnetoresistance (CMR) and is the
bulk material counterpart of spin transfer torque concept used to control giant
magnetoresistance in layered spin-valve structures.Comment: 4 pages, 4 figure
Dzyaloshinski-Moriya interactions in the kagome lattice
The kagom\'e lattice exhibits peculiar magnetic properties due to its
strongly frustated cristallographic structure, based on corner sharing
triangles. For nearest neighbour antiferromagnetic Heisenberg interactions
there is no Neel ordering at zero temperature both for quantum and classical s
pins. We show that, due to the peculiar structure, antisymmetric
Dzyaloshinsky-Moriya interactions ()
are present in this latt ice. In order to derive microscopically this
interaction we consider a set of localized d-electronic states. For classical
spins systems, we then study the phase diagram (T, D/J) through mean field
approximation and Monte-Carlo simulations and show that the antisymmetric
interaction drives this system to ordered states as soon as this interaction is
non zero. This mechanism could be involved to explain the magnetic structure of
Fe-jarosites.Comment: 4 pages, 2 figures. Presented at SCES 200
An evaluation of Northern Florida Bay as a nursery area for red drum, Sciaenops ocellatus, and other juvenile and small resident fishes.
Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at
six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy,
Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three
species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay
anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay
and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages
Graphene in periodically alternating magnetic field: unusual quantization of the anomalous Hall effect
We study the energy spectrum and electronic properties of graphene in a
periodic magnetic field of zero average with a symmetry of triangular lattice.
The periodic field leads to formation of a set of minibands separated by gaps,
which can be manipulated by external field. The Berry phase, related to the
motion of electrons in space, and the corresponding Chern numbers
characterizing topology of the energy bands are calculated analytically and
numerically. In this connection, we discuss the anomalous Hall effect in the
insulating state, when the Fermi level is located in the minigap. The results
of calculations show that in the model of gapless Dirac spectrum of graphene
the anomalous Hall effect can be treated as a sum of fractional quantum
numbers, related to the nonequivalent Dirac points.Comment: 6 pages, 5 figure
Extraction of nucleus-nucleus potential and energy dissipation from dynamical mean-field theory
Nucleus-nucleus interaction potentials in heavy-ion fusion reactions are
extracted from the microscopic time-dependent Hartree-Fock theory. When the
center-of-mass energy is much higher than the Coulomb barrier energy, extracted
potentials identify with the frozen density approximation. As the
center-of-mass energy decreases to the Coulomb barrier energy, potentials
become energy dependent. This dependence indicates dynamical reorganization of
internal degrees of freedom and leads to a reduction of the "apparent" barrier.
Including this effect leads to the Coulomb barrier energy very close to
experimental one. Aspects of one-body energy dissipation extracted from the
mean-field theory are discussed.Comment: 6 pages, 5 figures. Uses aipxfm.sty. A talk given at the FUSION08:
New Aspects of Heavy Ion Collisions Near the Coulomb Barrier, September
22-26, 2008, Chicago, US
Application of the S=1 underscreened Anderson lattice model to Kondo uranium and neptunium compounds
Magnetic properties of uranium and neptunium compounds showing the
coexistence of Kondo screening effect and ferromagnetic order are investigated
within the Anderson lattice Hamiltonian with a two-fold degenerate -level in
each site, corresponding to electronic configuration with spins. A
derivation of the Schrieffer-Wolff transformation is presented and the
resulting Hamiltonian has an effective -band term, in addition to the
regular exchange Kondo interaction between the -spins and the
spins of the conduction electrons. The obtained effective Kondo lattice model
can describe both the Kondo regime and a weak delocalization of -electron.
Within this model we compute the Kondo and Curie temperatures as a function of
model parameters, namely the Kondo exchange interaction constant , the
magnetic intersite exchange interaction and the effective -bandwidth.
We deduce, therefore, a phase diagram of the model which yields the coexistence
of Kondo effect and ferromagnetic ordering and also accounts for the pressure
dependence of the Curie temperature of uranium compounds such as UTe.Comment: 9 pages, 4 figure
- …
