1,515 research outputs found
Behavioural loyalty towards store brands.
This paper applies a consumer brand choice model to measure store brand (SB) loyalty. The aim of this paper is to examine whether SB loyalty is different across categories, and we focus on risk perception as an explanatory variable. The model is estimated using ACNielsen Spanish household scanner panel data on two laundry detergent categories over a 2 year period for more than 1107 households. Loyalty, price, socio demographics and shopping behaviour variables are included. The discrete choice model formulation is the logit modelStore brands; National brands; Brand loyalty; Logit model; Household scanner panel;
Cosmological Constraints from Hubble Parameter versus Redshift Data
We use the Simon, Verde, & Jimenez (2005) determination of the redshift
dependence of the Hubble parameter to constrain cosmological parameters in
three dark energy cosmological models. We consider the standard CDM
model, the XCDM parameterization of the dark energy equation of state, and a
slowly rolling dark energy scalar field with an inverse power-law potential.
The constraints are restrictive, consistent with those derived from Type Ia
supernova redshift-magnitude data, and complement those from galaxy cluster gas
mass fraction versus redshift data.Comment: Minor changes, including an estimate for H_0. ApJL, in pres
Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom
The interaction of electrons with a periodic potential of atoms in
crystalline solids gives rise to band structure. The band structure of existing
materials can be measured by photoemission spectroscopy and accurately
understood in terms of the tight-binding model, however not many experimental
approaches exist that allow to tailor artificial crystal lattices using a
bottom-up approach. The ability to engineer and study atomically crafted
designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS)
helps to understand the emergence of material properties. Here, we use atom
manipulation of individual vacancies in a chlorine monolayer on Cu(100) to
construct one- and two-dimensional structures of various densities and sizes.
Local STS measurements reveal the emergence of quasiparticle bands, evidenced
by standing Bloch waves, with tuneable dispersion. The experimental data are
understood in terms of a tight-binding model combined with an additional
broadening term that allows an estimation of the coupling to the underlying
substrate.Comment: 7 figures, 12 pages, main text and supplementary materia
Behavioural loyalty towards store brands
This paper applies a consumer brand choice model to measure store brand (SB) loyalty. The aim of this paper is to examine whether
SB loyalty is different across categories, and we focus on risk perception as an explanatory variable. The model is estimated using
ACNielsen Spanish household scanner panel data on two laundry detergent categories over a 2 year period for more than 1107
households. Loyalty, price, socio demographics and shopping behaviour variables are included. The discrete choice model formulation is
the logit modelThis research was supported by Ministerio de Educación y Ciencia Dir. Gral. de Investigación, Grant SEJ2004-00672Publicad
Self-assembly mechanism in colloids: perspectives from Statistical Physics
Motivated by recent experimental findings in chemical synthesis of colloidal
particles, we draw an analogy between self-assembly processes occurring in
biological systems (e.g. protein folding) and a new exciting possibility in the
field of material science. We consider a self-assembly process whose elementary
building blocks are decorated patchy colloids of various types, that
spontaneously drive the system toward a unique and predetermined targeted
macroscopic structure.
To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model
-- describing a fluid of colloidal spherical particles with a pre-defined
number and distribution of solvophobic and solvophilic regions on their
surface. The solvophobic and solvophilic regions are described via a
short-range square-well and a hard-sphere potentials, respectively.
Integral equation and perturbation theories are presented to discuss
structural and thermodynamical properties, with particular emphasis on the
computation of the fluid-fluid (or gas-liquid) transition in the
temperature-density plane.
The model allows the description of both one and two attractive caps, as a
function of the fraction of covered attractive surface, thus interpolating
between a square-well and a hard-sphere fluid, upon changing the coverage.
By comparison with Monte Carlo simulations, we assess the pros and the cons
of both integral equation and perturbation theories in the present context of
patchy colloids, where the computational effort for numerical simulations is
rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc
Effects of patch size and number within a simple model of patchy colloids
We report on a computer simulation and integral equation study of a simple
model of patchy spheres, each of whose surfaces is decorated with two opposite
attractive caps, as a function of the fraction of covered attractive
surface. The simple model explored --- the two-patch Kern-Frenkel model ---
interpolates between a square-well and a hard-sphere potential on changing the
coverage . We show that integral equation theory provides quantitative
predictions in the entire explored region of temperatures and densities from
the square-well limit down to . For smaller
, good numerical convergence of the equations is achieved only at
temperatures larger than the gas-liquid critical point, where however integral
equation theory provides a complete description of the angular dependence.
These results are contrasted with those for the one-patch case. We investigate
the remaining region of coverage via numerical simulation and show how the
gas-liquid critical point moves to smaller densities and temperatures on
decreasing . Below , crystallization prevents the
possibility of observing the evolution of the line of critical points,
providing the angular analog of the disappearance of the liquid as an
equilibrium phase on decreasing the range for spherical potentials. Finally, we
show that the stable ordered phase evolves on decreasing from a
three-dimensional crystal of interconnected planes to a two-dimensional
independent-planes structure to a one-dimensional fluid of chains when the
one-bond-per-patch limit is eventually reached.Comment: 26 pages, 11 figures, J. Chem. Phys. in pres
The reaction cross section
The one- and two-step mechanisms of the reaction in
the range of incident proton kinetic energy 1.13-3.0 GeV have been
investigated. A remarkable peculiarity of the two-step mechanism which
incorporates subprocesses and is the so
called velocity matching providing the presence of all intermediate particles
nearly to the on-mass-shell. The differential cross section has been calculated
using a realistic model for the hypertritium wave function. The
maximum value of the cross section is estimated as 1nb/sr. The
contribution of the one-step mechanism with the elementary process into the cross section has been found to be two - three orders of
magnitude smaller in comparison with the two-step mechanism.Comment: 10 pages, Latex, 3 Postscript figure
The clustering of the SDSS main galaxy sample - II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z=0.15
Citation: Howlett, C., Ross, A. J., Samushia, L., Percival, W. J., & Manera, M. (2015). The clustering of the SDSS main galaxy sample - II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z=0.15. Monthly Notices of the Royal Astronomical Society, 449(1), 848-866. doi:10.1093/mnras/stu2693We measure redshift space distortions in the two-point correlation function of a sample of 63 163 spectroscopically identified galaxies with z < 0.2, an epoch where there are currently only limited measurements, from the Sloan Digital Sky Survey Data Release 7 main galaxy sample (MGS). Our sample, which we denote MGS, covers 6813 deg(2) with an effective redshift z(eff) = 0.15 and is described in our companion paper (Paper I), which concentrates on baryon acoustic oscillation (BAO) measurements. In order to validate the fitting methods used in both papers, and derive errors, we create and analyse 1000 mock catalogues using a new algorithm called PICOLA to generate accurate dark matter fields. Haloes are then selected using a friends-of-friends algorithm, and populated with galaxies using a halo-occupation distribution fitted to the data. Using errors derived from these mocks, we fit a model to the monopole and quadrupole moments of the MGS correlation function. If we assume no Alcock-Paczynski (AP) effect (valid at z = 0.15 for any smooth model of the expansion history), we measure the amplitude of the velocity field, f sigma(8), at z = 0.15 to be 0.49(-0.14)(+0.15) . We also measure f sigma(8) including the AP effect. This latter measurement can be freely combined with recent cosmic microwave background results to constrain the growth index of fluctuations, gamma Assuming a background Lambda cold dark matter cosmology and combining with current BAO data, we find gamma = 0.64 +/- 0.09, which is consistent with the prediction of general relativity (gamma approximate to 0.55), though with a slight preference for higher gamma and hence models with weaker gravitational interactions
The 2-D electron gas at arbitrary spin polarizations and arbitrary coupling strengths: Exchange-correlation energies, distribution functions and spin-polarized phases
We use a recent approach [Phys. Rev. Letters, {\bf 84}, 959 (2000)] for
including Coulomb interactions in quantum systems via a classical mapping of
the pair-distribution functions (PDFs) for a study of the 2-D electron gas. As
in the 3-D case, the ``quantum temperature'' T_q of a classical 2-D Coulomb
fluid which has the same correlation energy as the quantum fluid is determined
as a function of the density parameter r_s. Spin-dependent exchange-correlation
energies are reported. Comparisons of the spin-dependent pair-distributions and
other calculated properties with any available 2-D quantum Monte Carlo (QMC)
results show excellent agreement, strongly favouring more recent QMC data. The
interesting novel physics brought to light by this study are: (a) the
independently determined quantum-temperatures for 3-D and 2-D are found to be
approximately the same, (i.e, universal) function of the classical coupling
constant Gamma. (b) the coupling constant Gamma increases rapidly with r_s in
2-D, making it comparatively more coupled than in 3-D; the stronger coupling in
2-D requires bridge corrections to the hyper- netted-chain method which is
adequate in 3-D; (c) the Helmholtz free energy of spin-polarized and
unpolarized phases have been calculated. The existence of a spin-polarized 2-D
liquid near r_s = 30, is found to be a marginal possibility. These results
pertain to clean uniform 2-D electron systems.Comment: This paper replaces the cond-mat/0109228 submision; the new version
include s more accurate numerical evaluation of the Helmholtz energies of the
para- and ferromagentic 2D fluides at finite temperatures. (Paper accepted
for publication in Phys. Rev. Lett.
- …
