1,515 research outputs found

    Behavioural loyalty towards store brands.

    Get PDF
    This paper applies a consumer brand choice model to measure store brand (SB) loyalty. The aim of this paper is to examine whether SB loyalty is different across categories, and we focus on risk perception as an explanatory variable. The model is estimated using ACNielsen Spanish household scanner panel data on two laundry detergent categories over a 2 year period for more than 1107 households. Loyalty, price, socio demographics and shopping behaviour variables are included. The discrete choice model formulation is the logit modelStore brands; National brands; Brand loyalty; Logit model; Household scanner panel;

    Cosmological Constraints from Hubble Parameter versus Redshift Data

    Get PDF
    We use the Simon, Verde, & Jimenez (2005) determination of the redshift dependence of the Hubble parameter to constrain cosmological parameters in three dark energy cosmological models. We consider the standard Λ\LambdaCDM model, the XCDM parameterization of the dark energy equation of state, and a slowly rolling dark energy scalar field with an inverse power-law potential. The constraints are restrictive, consistent with those derived from Type Ia supernova redshift-magnitude data, and complement those from galaxy cluster gas mass fraction versus redshift data.Comment: Minor changes, including an estimate for H_0. ApJL, in pres

    Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom

    Get PDF
    The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS) helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100) to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.Comment: 7 figures, 12 pages, main text and supplementary materia

    Behavioural loyalty towards store brands

    Get PDF
    This paper applies a consumer brand choice model to measure store brand (SB) loyalty. The aim of this paper is to examine whether SB loyalty is different across categories, and we focus on risk perception as an explanatory variable. The model is estimated using ACNielsen Spanish household scanner panel data on two laundry detergent categories over a 2 year period for more than 1107 households. Loyalty, price, socio demographics and shopping behaviour variables are included. The discrete choice model formulation is the logit modelThis research was supported by Ministerio de Educación y Ciencia Dir. Gral. de Investigación, Grant SEJ2004-00672Publicad

    Self-assembly mechanism in colloids: perspectives from Statistical Physics

    Full text link
    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model -- describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperature-density plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc

    Effects of patch size and number within a simple model of patchy colloids

    Get PDF
    We report on a computer simulation and integral equation study of a simple model of patchy spheres, each of whose surfaces is decorated with two opposite attractive caps, as a function of the fraction χ\chi of covered attractive surface. The simple model explored --- the two-patch Kern-Frenkel model --- interpolates between a square-well and a hard-sphere potential on changing the coverage χ\chi. We show that integral equation theory provides quantitative predictions in the entire explored region of temperatures and densities from the square-well limit χ=1.0\chi = 1.0 down to χ0.6\chi \approx 0.6. For smaller χ\chi, good numerical convergence of the equations is achieved only at temperatures larger than the gas-liquid critical point, where however integral equation theory provides a complete description of the angular dependence. These results are contrasted with those for the one-patch case. We investigate the remaining region of coverage via numerical simulation and show how the gas-liquid critical point moves to smaller densities and temperatures on decreasing χ\chi. Below χ0.3\chi \approx 0.3, crystallization prevents the possibility of observing the evolution of the line of critical points, providing the angular analog of the disappearance of the liquid as an equilibrium phase on decreasing the range for spherical potentials. Finally, we show that the stable ordered phase evolves on decreasing χ\chi from a three-dimensional crystal of interconnected planes to a two-dimensional independent-planes structure to a one-dimensional fluid of chains when the one-bond-per-patch limit is eventually reached.Comment: 26 pages, 11 figures, J. Chem. Phys. in pres

    The pd3HΛK+pd\to ^3H_\Lambda K^+ reaction cross section

    Full text link
    The one- and two-step mechanisms of the pd3HΛK+pd\to ^3H_\Lambda K^+ reaction in the range of incident proton kinetic energy 1.13-3.0 GeV have been investigated. A remarkable peculiarity of the two-step mechanism which incorporates subprocesses ppdπ+pp\to d\pi ^+ and π+nK+Λ\pi^+n\to K^+\Lambda is the so called velocity matching providing the presence of all intermediate particles nearly to the on-mass-shell. The differential cross section has been calculated using a realistic model for the hypertritium 3HΛ^3H_\Lambda wave function. The maximum value of the cross section is estimated as \sim 1nb/sr. The contribution of the one-step mechanism with the elementary process pNNKΛpN\to NK\Lambda into the cross section has been found to be two - three orders of magnitude smaller in comparison with the two-step mechanism.Comment: 10 pages, Latex, 3 Postscript figure

    The clustering of the SDSS main galaxy sample - II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z=0.15

    Get PDF
    Citation: Howlett, C., Ross, A. J., Samushia, L., Percival, W. J., & Manera, M. (2015). The clustering of the SDSS main galaxy sample - II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z=0.15. Monthly Notices of the Royal Astronomical Society, 449(1), 848-866. doi:10.1093/mnras/stu2693We measure redshift space distortions in the two-point correlation function of a sample of 63 163 spectroscopically identified galaxies with z < 0.2, an epoch where there are currently only limited measurements, from the Sloan Digital Sky Survey Data Release 7 main galaxy sample (MGS). Our sample, which we denote MGS, covers 6813 deg(2) with an effective redshift z(eff) = 0.15 and is described in our companion paper (Paper I), which concentrates on baryon acoustic oscillation (BAO) measurements. In order to validate the fitting methods used in both papers, and derive errors, we create and analyse 1000 mock catalogues using a new algorithm called PICOLA to generate accurate dark matter fields. Haloes are then selected using a friends-of-friends algorithm, and populated with galaxies using a halo-occupation distribution fitted to the data. Using errors derived from these mocks, we fit a model to the monopole and quadrupole moments of the MGS correlation function. If we assume no Alcock-Paczynski (AP) effect (valid at z = 0.15 for any smooth model of the expansion history), we measure the amplitude of the velocity field, f sigma(8), at z = 0.15 to be 0.49(-0.14)(+0.15) . We also measure f sigma(8) including the AP effect. This latter measurement can be freely combined with recent cosmic microwave background results to constrain the growth index of fluctuations, gamma Assuming a background Lambda cold dark matter cosmology and combining with current BAO data, we find gamma = 0.64 +/- 0.09, which is consistent with the prediction of general relativity (gamma approximate to 0.55), though with a slight preference for higher gamma and hence models with weaker gravitational interactions

    The 2-D electron gas at arbitrary spin polarizations and arbitrary coupling strengths: Exchange-correlation energies, distribution functions and spin-polarized phases

    Full text link
    We use a recent approach [Phys. Rev. Letters, {\bf 84}, 959 (2000)] for including Coulomb interactions in quantum systems via a classical mapping of the pair-distribution functions (PDFs) for a study of the 2-D electron gas. As in the 3-D case, the ``quantum temperature'' T_q of a classical 2-D Coulomb fluid which has the same correlation energy as the quantum fluid is determined as a function of the density parameter r_s. Spin-dependent exchange-correlation energies are reported. Comparisons of the spin-dependent pair-distributions and other calculated properties with any available 2-D quantum Monte Carlo (QMC) results show excellent agreement, strongly favouring more recent QMC data. The interesting novel physics brought to light by this study are: (a) the independently determined quantum-temperatures for 3-D and 2-D are found to be approximately the same, (i.e, universal) function of the classical coupling constant Gamma. (b) the coupling constant Gamma increases rapidly with r_s in 2-D, making it comparatively more coupled than in 3-D; the stronger coupling in 2-D requires bridge corrections to the hyper- netted-chain method which is adequate in 3-D; (c) the Helmholtz free energy of spin-polarized and unpolarized phases have been calculated. The existence of a spin-polarized 2-D liquid near r_s = 30, is found to be a marginal possibility. These results pertain to clean uniform 2-D electron systems.Comment: This paper replaces the cond-mat/0109228 submision; the new version include s more accurate numerical evaluation of the Helmholtz energies of the para- and ferromagentic 2D fluides at finite temperatures. (Paper accepted for publication in Phys. Rev. Lett.
    corecore