1,227 research outputs found

    Majorana Zero Modes in Graphene

    Get PDF
    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goal in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here we demonstrate an alternative approach for the creation of TS in graphene/superconductor junctions without the need of spin-orbit coupling. Our prediction stems from the helicity of graphene's zero Landau level edge states in the presence of interactions, and on the possibility, experimentally demonstrated, to tune their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction, and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter in particular exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.Comment: 14 pages, 8 figures. Included simulations of Andreev spectroscopy and mor

    Self-assembly mechanism in colloids: perspectives from Statistical Physics

    Full text link
    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model -- describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperature-density plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc

    Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling

    Get PDF
    The inelastic portion of the tunnel current through an individual magnetic atom grants unique access to read out and change the atom's spin state, but it also provides a path for spontaneous relaxation and decoherence. Controlled closure of the inelastic channel would allow for the latter to be switched off at will, paving the way to coherent spin manipulation in single atoms. Here we demonstrate complete closure of the inelastic channels for both spin and orbital transitions due to a controlled geometric modification of the atom's environment, using scanning tunnelling microscopy (STM). The observed suppression of the excitation signal, which occurs for Co atoms assembled into chain on a Cu2_2N substrate, indicates a structural transition affecting the dz_z2^2 orbital, effectively cutting off the STM tip from the spin-flip cotunnelling path.Comment: 4 figures plus 4 supplementary figure

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the low-redshift sample

    Get PDF
    We present one thousand mock galaxy catalogues for the analysis of the Low Redshift Sample (LOWZ, effective redshift z ~ 10.32) of the Baryon Oscillation Spectroscopic Survey Data Releases 10 and 11. These mocks have been created following the PTHalos method of Manera13 et al. (2013) revised to include new developments. The main improvement is the introduction of a redshift dependence in the Halo Occupation Distribution in order to account for the change of the galaxy number density with redshift. These mock catalogues are used in the analyses of the LOWZ galaxy clustering by the BOSS collaboration.Comment: 10 pages, 8 figure

    Nuevos datos sobre "Myxomycetes" presentes en la provincia de Granada (España)

    Get PDF
    En el presente trabajo se aportan nuevos datos sobre el conocimiento de los Myxomycetes de Granada (sur de España), citándose catorce nuevas especies, entre las que ne destacan: Comatricha alta Preusz, Diderma trevelyanii (Grev.) Fr., Diderma umbilicatum Pers., Didymium bahiense Gottsberger, Didymium difforme (Pers.) S.F. Gray, Didymium trachysporum G. Lister, Lamproderma scintillans (Berk. & Br.) Morgan, Physarum contextum (Pers.) Pers., Physarum vernum Somm. y se amplía la corologia de varias especies ya citadas en anteriores trabajos. Se comenta la distribución en la Peninsula Ibérica, confeccionándose mapas de distribución de dichos tazones basados en cuadrícula UTM de 50 Km.This article shows a study on the Myxomycetes on the province of Granada (Spain). We have found fourteen new taxa for this province. Some of these are: Comatricha alta Preusz, Diderma trevelyanii(Gres.) Fr., Diderma umbilicatum Pers., Didymium bahiense Gottsberger, Didymium difforme (Pers.) S.F. Gray, Didymium trachysporum G. Lister, Lamproderma scintillans (Berk. & Br.) Morgan, Physarum contextum (Pers.) Pers., Physarum vernum Somm. Distribution maps are given. We also included new dates about the chorology another species

    Integral equations for simple fluids in a general reference functional approach

    Full text link
    The integral equations for the correlation functions of an inhomogeneous fluid mixture are derived using a functional Taylor expansion of the free energy around an inhomogeneous equilibrium distribution. The system of equations is closed by the introduction of a reference functional for the correlations beyond second order in the density difference from the equilibrium distribution. Explicit expressions are obtained for energies required to insert particles of the fluid mixture into the inhomogeneous system. The approach is illustrated by the determination of the equation of state of a simple, truncated Lennard--Jones fluid and the analysis of the behavior of this fluid near a hard wall. The wall--fluid integral equation exhibits complete drying and the corresponding coexisting densities are in good agreement with those obtained from the standard (Maxwell) construction applied to the bulk fluid. Self--consistency of the approach is examined by analyzing the virial/compressibility routes to the equation of state and the Gibbs--Duhem relation for the bulk fluid, and the contact density sum rule and the Gibbs adsorption equation for the hard wall problem. For the bulk fluid, we find good self--consistency for stable states outside the critical region. For the hard wall problem, the Gibbs adsorption equation is fulfilled very well near phase coexistence where the adsorption is large.For the contact density sum rule, we find some deviationsnear coexistence due to a slight disagreement between the coexisting density for the gas phase obtained from the Maxwell construction and from complete drying at the hard wall.Comment: 29 page

    3^3He Structure and Mechanisms of p3p^3He Backward Elastic Scattering

    Get PDF
    The mechanism of p3p^3He backward elastic scattering is studied. It is found that the triangle diagrams with the subprocesses pd3pd\to ^3Heπ0 \pi^0, pd3pd^*\to ^3Heπ0 \pi^0 and p(pp)3p(pp)\to^3Heπ+ \pi^+, where dd^* and pppp denote the singlet deuteron and diproton pair in the 1S0^1S_0 state, respectively, dominate in the cross section at 0.3-0.8 GeV, and their contribution is comparable with that for a sequential transfer of a npnp pair at 1-1.5 GeV. The contribution of the d+ppd^*+pp, estimated on the basis of the spectator mechanism of the p(NN)3p(NN)\to ^3Heπ \pi reaction, increases the p3p^3He3\to ^3Hep p cross section by one order of magnitude as compared to the contribution of the deuteron alone. Effects of the initial and final states interaction are taken into account.Comment: 17 pages, Latex, 4 postscript figures, expanded version, accepted by Physical Review
    corecore