1,676 research outputs found
Resilient Quantum Computation: Error Models and Thresholds
Recent research has demonstrated that quantum computers can solve certain
types of problems substantially faster than the known classical algorithms.
These problems include factoring integers and certain physics simulations.
Practical quantum computation requires overcoming the problems of environmental
noise and operational errors, problems which appear to be much more severe than
in classical computation due to the inherent fragility of quantum
superpositions involving many degrees of freedom. Here we show that arbitrarily
accurate quantum computations are possible provided that the error per
operation is below a threshold value. The result is obtained by combining
quantum error-correction, fault tolerant state recovery, fault tolerant
encoding of operations and concatenation. It holds under physically realistic
assumptions on the errors.Comment: 19 pages in RevTex, many figures, the paper is also avalaible at
http://qso.lanl.gov/qc
Experimental Implementation of a Codeword Stabilized Quantum Code
A five-qubit codeword stabilized quantum code is implemented in a seven-qubit
system using nuclear magnetic resonance (NMR). Our experiment implements a good
nonadditive quantum code which encodes a larger Hilbert space than any
stabilizer code with the same length and capable of correcting the same kind of
errors. The experimentally measured quantum coherence is shown to be robust
against artificially introduced errors, benchmarking the success in
implementing the quantum error correction code. Given the typical decoherence
time of the system, our experiment illustrates the ability of coherent control
to implement complex quantum circuits for demonstrating interesting results in
spin qubits for quantum computing
Bromophenyl functionalization of carbon nanotubes : an ab initio study
We study the thermodynamics of bromophenyl functionalization of carbon
nanotubes with respect to diameter and metallic/insulating character using
density-functional theory (DFT). On one hand, we show that the activation
energy for the grafting of a bromophenyl molecule onto a semiconducting zigzag
nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to
diameter within numerical accuracy. On the other hand, the binding energy of a
single bromophenyl molecule shows a clear diameter dependence and ranges from
1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube.
This is in part explained by the transition from sp2 to sp3 bonding occurring
to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that
smaller nanotubes are closer to a sp3 hybridization than larger ones due to
increased curvature. Since a second bromophenyl unit can attach without energy
barrier next to an isolated grafted unit, they are assumed to exist in pairs.
The para configuration is found to be favored for the pairs and their binding
energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0)
nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius
dependence is derived using a tight binding hamiltonian and first order
perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube
radius) is verified by our DFT results within numerical accuracy. Finally,
metallic nanotubes are found to be more reactive than semiconducting nanotubes,
a feature that can be explained by a non-zero density of states at the Fermi
level for metallic nanotubes.Comment: 7 pages, 5 figures and 3 table
Experimental detection of non-classical correlations in mixed state quantum computation
We report on an experiment to detect non-classical correlations in a highly
mixed state. The correlations are characterized by the quantum discord and are
observed using four qubits in a liquid state nuclear magnetic resonance quantum
information processor. The state analyzed is the output of a DQC1 computation,
whose input is a single quantum bit accompanied by n maximally mixed qubits.
This model of computation outperforms the best known classical algorithms, and
although it contains vanishing entanglement it is known to have quantum
correlations characterized by the quantum discord. This experiment detects
non-vanishing quantum discord, ensuring the existence of non-classical
correlations as measured by the quantum discord.Comment: The second version more closely resembles that of the published
manuscrip
Three path interference using nuclear magnetic resonance: a test of the consistency of Born's rule
The Born rule is at the foundation of quantum mechanics and transforms our
classical way of understanding probabilities by predicting that interference
occurs between pairs of independent paths of a single object. One consequence
of the Born rule is that three way (or three paths) quantum interference does
not exist. In order to test the consistency of the Born rule, we examine
detection probabilities in three path intereference using an ensemble of
spin-1/2 quantum registers in liquid state nuclear magnetic resonance (LSNMR).
As a measure of the consistency, we evaluate the ratio of three way
interference to two way interference. Our experiment bounded the ratio to the
order of , and hence it is consistent with Born's rule.Comment: 11 pages, 4 figures; Improved presentation of figures 1 and 4,
changes made in section 2 to better describe the experiment, minor changes
throughout, and added several reference
Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code
Large-scale universal quantum computing requires the implementation of
quantum error correction (QEC). While the implementation of QEC has already
been demonstrated for quantum memories, reliable quantum computing requires
also the application of nontrivial logical gate operations to the encoded
qubits. Here, we present examples of such operations by implementing, in
addition to the identity operation, the NOT and the Hadamard gate to a logical
qubit encoded in a five qubit system that allows correction of arbitrary single
qubit errors. We perform quantum process tomography of the encoded gate
operations, demonstrate the successful correction of all possible single qubit
errors and measure the fidelity of the encoded logical gate operations
Optimizing the discrete time quantum walk using a SU(2) coin
We present a generalized version of the discrete time quantum walk, using the
SU(2) operation as the quantum coin. By varying the coin parameters, the
quantum walk can be optimized for maximum variance subject to the functional
form and the probability distribution in the position
space can be biased. We also discuss the variation in measurement entropy with
the variation of the parameters in the SU(2) coin. Exploiting this we show how
quantum walk can be optimized for improving mixing time in an -cycle and for
quantum walk search.Comment: 6 pages, 6 figure
Multiqubit Spin
It is proposed that the state space of a quantum object with a complicated
discrete spectrum can be used as a basis for multiqubit recording and
processing of information in a quantum computer. As an example, nuclear spin
3/2 is considered. The possibilities of writing and reading two quantum bits of
information, preparation of the initial state, implementation of the "rotation"
and "controlled negation" operations, which are sufficient for constructing any
algorithms, are demonstrated.Comment: 7 pages, PostScript, no figures; translation of Pis'ma Zh. Eksp.
Teor. Fiz. 70, No. 1, pp. 59-63, 10 July 1999; (Submitted 29 April 1999;
resubmitted 2 June 1999
- …
