3,146 research outputs found

    Diagnosing order by disorder in quantum spin systems

    Get PDF
    In this paper we study the frustrated J1-J2 quantum Heisenberg model on the square lattice for J2 > 2J1, in a magnetic field. In this regime the classical system is known to have a degenerate manifold of lowest energy configurations, where standard thermal order by disorder occurs. In order to study its quantum version we use a path integral formulation in terms of coherent states. We show that the classical degeneracy in the plane transverse to the magnetic field is lifted by quantum fluctuations. Collinear states are then selected, in a similar pattern to that set by thermal order by disorder, leaving a Z2 degeneracy. A careful analysis reveals a purely quantum mechanical effect given by the tunneling between the two minima selected by fluctuations. The effective description contains two planar (XY -like) fields conjugate to the total magnetization and the difference of the two sublattice magnetizations. Disorder in either or both of these fields produces the locking of their conjugate observables. Furthermore, within this scenario we argue that the quantum state is close to a product state.Comment: 8 pages, 3 figure

    Structural studies of mesoporous ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} mixed oxides for catalytical applications

    Get PDF
    In this work the synthesis of ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} were developed, based on the process to form ordered mesoporous materials such as SBA-15 silica. The triblock copolymer Pluronic P-123 was used as template, aiming to obtain crystalline single phase walls and larger specific surface area, for future applications in catalysis. SAXS and XRD results showed a relationship between ordered pores and the material crystallization. 90% of CeO2_{2} leaded to single phase homogeneous ceria-zirconia solid solution of cubic fluorite structure (Fm3ˉ\bar{3}m). The SiO2_{2} addition improved structural and textural properties as well as the reduction behavior at lower temperatures, investigated by XANES measurements under H2_{2} atmosphere

    Comparison between disordered quantum spin 1/2 chains

    Get PDF
    We study the magnetic properties of two types of one dimensional XX spin 1/2 chains. The first type has only nearest neighbor interactions which can be either antiferromagnetic or ferromagnetic and the second type which has both nearest neighbor and next nearest neighbor interactions, but only antiferromagnetic in character. We study these systems in the presence of low transverse magnetic fields both analytically and numerically. Comparison of results show a close relation between the two systems, which is in agreement with results previously found in Heisenberg chains by means of a numerical real space renormalization group procedure.Comment: 7 page

    A remarkable new butterfly species from western Amazonia (Lepidoptera, Nymphalidae, Satyrinae)

    Get PDF
    A distinctive new species of butterfly in the subtribe Euptychiina (Nymphalidae: Satyrinae), which is widespread throughout the upper Amazon in Colombia, Ecuador and Peru, is here described. The species is provisionally placed in the genus Magneuptychia Forster, 1964, although this is likely to change as the higher level taxonomy of Euptychiina is resolved and the genus is reviewed in detail.Authorisation has been given for this article to be loaded into the NHM repository (email A. Quevedo, Executive Director of ProAves, 17.1.2017). The attached file is the published version

    Nonlinear transport and oscillating magnetoresistance in double quantum wells

    Full text link
    We study the evolution of low-temperature magnetoresistance in double quantum wells in the region below 1 Tesla as the applied current density increases. A flip of the magneto-intersubband oscillation peaks, which occurs as a result of the current-induced inversion of the quantum component of resistivity, is observed. We also see splitting of these peaks as another manifestation of nonlinear behavior, specific for the two-subband electron systems. The experimental results are quantitatively explained by the theory based on the kinetic equation for the isotropic non-equilibrium part of electron distribution function. The inelastic scattering time is determined from the dependence of the inversion magnetic field on the current.Comment: 20 pages, 10 figure

    Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds

    Get PDF
    How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) distance between successive footfalls—was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk–run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history

    Measurement of miniband parameters of a doped superlattice by photoluminescence in high magnetic fields

    Full text link
    We have studied a 50/50\AA superlattice of GaAs/Al0.21_{0.21}Ga0.79_{0.79}As composition, modulation-doped with Si, to produce n=1.4×1012n=1.4\times 10^{12} cm2^{-2} electrons per superlattice period. The modulation-doping was tailored to avoid the formation of Tamm states, and photoluminescence due to interband transitions from extended superlattice states was detected. By studying the effects of a quantizing magnetic field on the superlattice photoluminescence, the miniband energy width, the reduced effective mass of the electron-hole pair, and the band gap renormalization could be deduced.Comment: minor typing errors (minus sign in eq. (5)

    Experimental Polarization State Tomography using Optimal Polarimeters

    Full text link
    We report on the experimental implementation of a polarimeter based on a scheme known to be optimal for obtaining the polarization vector of ensembles of spin-1/2 quantum systems, and the alignment procedure for this polarimeter is discussed. We also show how to use this polarimeter to estimate the polarization state for identically prepared ensembles of single photons and photon pairs and extend the method to obtain the density matrix for generic multi-photon states. State reconstruction and performance of the polarimeter is illustrated by actual measurements on identically prepared ensembles of single photons and polarization entangled photon pairs

    Estimativa do custo de produção de algodão, safra 2004/05, para Mato Grosso do Sul e Mato Grosso.

    Get PDF
    bitstream/item/24700/1/COT200491.pd
    corecore