3,146 research outputs found
Diagnosing order by disorder in quantum spin systems
In this paper we study the frustrated J1-J2 quantum Heisenberg model on the
square lattice for J2 > 2J1, in a magnetic field. In this regime the classical
system is known to have a degenerate manifold of lowest energy configurations,
where standard thermal order by disorder occurs. In order to study its quantum
version we use a path integral formulation in terms of coherent states. We show
that the classical degeneracy in the plane transverse to the magnetic field is
lifted by quantum fluctuations. Collinear states are then selected, in a
similar pattern to that set by thermal order by disorder, leaving a Z2
degeneracy. A careful analysis reveals a purely quantum mechanical effect given
by the tunneling between the two minima selected by fluctuations. The effective
description contains two planar (XY -like) fields conjugate to the total
magnetization and the difference of the two sublattice magnetizations. Disorder
in either or both of these fields produces the locking of their conjugate
observables. Furthermore, within this scenario we argue that the quantum state
is close to a product state.Comment: 8 pages, 3 figure
Structural studies of mesoporous ZrO-CeO and ZrO-CeO/SiO mixed oxides for catalytical applications
In this work the synthesis of ZrO-CeO and
ZrO-CeO/SiO were developed, based on the process to form
ordered mesoporous materials such as SBA-15 silica. The triblock copolymer
Pluronic P-123 was used as template, aiming to obtain crystalline single phase
walls and larger specific surface area, for future applications in catalysis.
SAXS and XRD results showed a relationship between ordered pores and the
material crystallization. 90% of CeO leaded to single phase homogeneous
ceria-zirconia solid solution of cubic fluorite structure (Fmm). The
SiO addition improved structural and textural properties as well as the
reduction behavior at lower temperatures, investigated by XANES measurements
under H atmosphere
Comparison between disordered quantum spin 1/2 chains
We study the magnetic properties of two types of one dimensional XX spin 1/2
chains. The first type has only nearest neighbor interactions which can be
either antiferromagnetic or ferromagnetic and the second type which has both
nearest neighbor and next nearest neighbor interactions, but only
antiferromagnetic in character. We study these systems in the presence of low
transverse magnetic fields both analytically and numerically. Comparison of
results show a close relation between the two systems, which is in agreement
with results previously found in Heisenberg chains by means of a numerical real
space renormalization group procedure.Comment: 7 page
A remarkable new butterfly species from western Amazonia (Lepidoptera, Nymphalidae, Satyrinae)
A distinctive new species of butterfly in the subtribe Euptychiina (Nymphalidae: Satyrinae), which is widespread throughout the upper Amazon in Colombia, Ecuador and Peru, is here described. The species is provisionally placed in the genus Magneuptychia Forster, 1964, although this is likely to change as the higher level taxonomy of Euptychiina is resolved and the genus is reviewed in detail.Authorisation has been given for this article to be loaded into the NHM repository (email A. Quevedo, Executive Director of ProAves, 17.1.2017). The attached file is the published version
Nonlinear transport and oscillating magnetoresistance in double quantum wells
We study the evolution of low-temperature magnetoresistance in double quantum
wells in the region below 1 Tesla as the applied current density increases. A
flip of the magneto-intersubband oscillation peaks, which occurs as a result of
the current-induced inversion of the quantum component of resistivity, is
observed. We also see splitting of these peaks as another manifestation of
nonlinear behavior, specific for the two-subband electron systems. The
experimental results are quantitatively explained by the theory based on the
kinetic equation for the isotropic non-equilibrium part of electron
distribution function. The inelastic scattering time is determined from the
dependence of the inversion magnetic field on the current.Comment: 20 pages, 10 figure
Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds
How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width—the mediolateral (transverse) distance between successive footfalls—was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk–run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history
Measurement of miniband parameters of a doped superlattice by photoluminescence in high magnetic fields
We have studied a 50/50\AA superlattice of GaAs/AlGaAs
composition, modulation-doped with Si, to produce
cm electrons per superlattice period. The modulation-doping was tailored
to avoid the formation of Tamm states, and photoluminescence due to interband
transitions from extended superlattice states was detected. By studying the
effects of a quantizing magnetic field on the superlattice photoluminescence,
the miniband energy width, the reduced effective mass of the electron-hole
pair, and the band gap renormalization could be deduced.Comment: minor typing errors (minus sign in eq. (5)
Experimental Polarization State Tomography using Optimal Polarimeters
We report on the experimental implementation of a polarimeter based on a
scheme known to be optimal for obtaining the polarization vector of ensembles
of spin-1/2 quantum systems, and the alignment procedure for this polarimeter
is discussed. We also show how to use this polarimeter to estimate the
polarization state for identically prepared ensembles of single photons and
photon pairs and extend the method to obtain the density matrix for generic
multi-photon states. State reconstruction and performance of the polarimeter is
illustrated by actual measurements on identically prepared ensembles of single
photons and polarization entangled photon pairs
Regulador de crescimento aplicado via semente e seus efeitos sobre algodoeiros submetidos a déficit hídrico.
Estimativa do custo de produção de algodão, safra 2004/05, para Mato Grosso do Sul e Mato Grosso.
bitstream/item/24700/1/COT200491.pd
- …
