378 research outputs found
Near-threshold production of , and at a fixed-target experiment at the future ultra-high-energy proton colliders
We outline the opportunities to study the production of the Standard Model
bosons, , and at "low" energies at fixed-target experiments
based at possible future ultra-high-energy proton colliders, \ie\ the
High-Energy LHC, the Super proton-proton Collider and the Future Circular
Collider -- hadron-hadron. These can be indeed made in conjunction with the
proposed future colliders designed to reach up to TeV by using
bent crystals to extract part of the halo of the beam which would then impinge
on a fixed target. Without disturbing the collider operation, this technique
allows for the extraction of a substantial amount of particles in addition to
serve for a beam-cleaning purpose. With this method, high-luminosity
fixed-target studies at centre-of-mass energies above the , and
masses, GeV, are possible. We also discuss the
possibility offered by an internal gas target, which can also be used as
luminosity monitor by studying the beam transverse shape
Prospectives for A Fixed-Target ExpeRiment at the LHC: AFTER@LHC
We argue that the concept of a multi-purpose fixed-target experiment with the
proton or lead-ion LHC beams extracted by a bent crystal would offer a number
of ground-breaking precision-physics opportunities. The multi-TeV LHC beams
will allow for the most energetic fixed-target experiments ever performed. The
fixed-target mode has the advantage of allowing for high luminosities, spin
measurements with a polarised target, and access over the full backward
rapidity domain --uncharted until now-- up to x_F ~ -1.Comment: 6 pages, 1 table, LaTeX. Proceedings of the 36th International
Conference on High Energy Physics (ICHEP2012), 4-11 July 2012, Melbourne,
Australi
Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)
We outline the opportunities for spin physics which are offered by a next
generation and multi-purpose fixed-target experiment exploiting the proton LHC
beam extracted by a bent crystal. In particular, we focus on the study of
single transverse spin asymetries with the polarisation of the target.Comment: Contributed to the 20th International Spin Physics Symposium,
SPIN2012, 17-22 September 2012, Dubna, Russia, 4 pages, LaTe
A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) : luminosities, target polarisation and a selection of physics studies
We report on a future multi-purpose fixed-target experiment with the proton
or lead ion LHC beams extracted by a bent crystal. The multi-TeV LHC beams
allow for the most energetic fixed-target experiments ever performed. Such an
experiment, tentatively named AFTER for "A Fixed-Target ExperRiment", gives
access to new domains of particle and nuclear physics complementing that of
collider experiments, in particular at RHIC and at the EIC projects. The
instantaneous luminosity at AFTER using typical targets surpasses that of RHIC
by more than 3 orders of magnitude. Beam extraction by a bent crystal offers an
ideal way to obtain a clean and very collimated high-energy beam, without
decreasing the performance of the LHC. The fixed-target mode also has the
advantage of allowing for spin measurements with a polarised target and for an
access over the full backward rapidity domain up to xF ~ - 1. Here, we
elaborate on the reachable luminosities, the target polarisation and a
selection of measurements with hydrogen and deuterium targets.Comment: 6 pages. Proceedings of the Sixth International Conference on Quarks
and Nuclear Physics QNP2012 (16-20 April 2012, Ecole Polytechnique,
Palaiseau,France
Effects of alteplase for acute stroke according to criteria defining the European Union and United States marketing authorizations: individual-patient-data meta-analysis of randomized trials
Background:
The recommended maximum age and time window for intravenous alteplase treatment of acute ischemic stroke differs between the Europe Union and United States.
Aims:
We compared the effects of alteplase in cohorts defined by the current Europe Union or United States marketing approval labels, and by hypothetical revisions of the labels that would remove the Europe Union upper age limit or extend the United States treatment time window to 4.5 h.
Methods:
We assessed outcomes in an individual-patient-data meta-analysis of eight randomized trials of intravenous alteplase (0.9 mg/kg) versus control for acute ischemic stroke. Outcomes included: excellent outcome (modified Rankin score 0–1) at 3–6 months, the distribution of modified Rankin score, symptomatic intracerebral hemorrhage, and 90-day mortality.
Results:
Alteplase increased the odds of modified Rankin score 0–1 among 2449/6136 (40%) patients who met the current European Union label and 3491 (57%) patients who met the age-revised label (odds ratio 1.42, 95% CI 1.21−1.68 and 1.43, 1.23−1.65, respectively), but not in those outside the age-revised label (1.06, 0.90−1.26). By 90 days, there was no increased mortality in the current and age-revised cohorts (hazard ratios 0.98, 95% CI 0.76−1.25 and 1.01, 0.86–1.19, respectively) but mortality remained higher outside the age-revised label (1.19, 0.99–1.42). Similarly, alteplase increased the odds of modified Rankin score 0-1 among 1174/6136 (19%) patients who met the current US approval and 3326 (54%) who met a 4.5-h revised approval (odds ratio 1.55, 1.19−2.01 and 1.37, 1.17−1.59, respectively), but not for those outside the 4.5-h revised approval (1.14, 0.97−1.34). By 90 days, no increased mortality remained for the current and 4.5-h revised label cohorts (hazard ratios 0.99, 0.77−1.26 and 1.02, 0.87–1.20, respectively) but mortality remained higher outside the 4.5-h revised approval (1.17, 0.98–1.41).
Conclusions:
An age-revised European Union label or 4.5-h-revised United States label would each increase the number of patients deriving net benefit from alteplase by 90 days after acute ischemic stroke, without excess mortality
Predictions for Pb Collisions at TeV: Comparison with Data
Predictions made in Albacete {\it et al} prior to the LHC Pb run at
TeV are compared to currently available data. Some
predictions shown here have been updated by including the same experimental
cuts as the data. Some additional predictions are also presented, especially
for quarkonia, that were provided to the experiments before the data were made
public but were too late for the original publication are also shown here.Comment: 55 pages 35 figure
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
- …
