1,706 research outputs found
Effects of Nanoparticles on the Dynamic Morphology of Electrified Jets
We investigate the effects of nanoparticles on the onset of varicose and
whipping instabilities in the dynamics of electrified jets. In particular, we
show that the non-linear interplay between the mass of the nanoparticles and
electrostatic instabilities, gives rise to qualitative changes of the dynamic
morphology of the jet, which in turn, drastically affect the final deposition
pattern in electrospinning experiments. It is also shown that even a tiny
amount of excess mass, of the order of a few percent, may more than double the
radius of the electrospun fiber, with substantial implications for the design
of experiments involving electrified jets as well as spun organic fibers.Comment: 8 pages, 7 figures, 1 tabl
Dynamic mesh refinement for discrete models of jet electro-hydrodynamics
Nowadays, several models of unidimensional fluid jets exploit discrete
element methods. In some cases, as for models aiming at describing the
electrospinning nanofabrication process of polymer fibers, discrete element
methods suffer a non constant resolution of the jet representation. We develop
a dynamic mesh-refinement method for the numerical study of the
electro-hydrodynamic behavior of charged jets using discrete element methods.
To this purpose, we import ideas and techniques from the string method
originally developed in the framework of free-energy landscape simulations. The
mesh-refined discrete element method is demonstrated for the case of
electrospinning applications.Comment: 16 pages, 7 figures in Journal of Computational Science, 201
Non-linear Langevin model for the early-stage dynamics of electrospinning jets
We present a non-linear Langevin model to investigate the early-stage
dynamics of electrified polymer jets in electrospinning experiments. In
particular, we study the effects of air drag force on the uniaxial elongation
of the charged jet, right after ejection from the nozzle. Numerical simulations
show that the elongation of the jet filament close to the injection point is
significantly affected by the non-linear drag exerted by the surrounding air.
These result provide useful insights for the optimal design of current and
future electrospinning experiments.Comment: 11 pages, 6 figures, 1 table. arXiv admin note: text overlap with
arXiv:1503.0469
Effect of pH on superoxide/ hydroperoxyl radical trapping by nitrones: an EPR/kinetic study
International audienceThe pH dependence of the apparent rate constant kTap for O2-./HO2. trapping by four nitrones was examined. In each case, kinetic curves were obtained after treatment of EPR spectra of the spin adduct formed using both singular value decomposition and pseudo-inverse deconvolution methods. Modelling these curves led to evaluate kTap at various pH values. Analysis of the pH dependence of kTap permitted the determination of the rate constants for the spin trapping of O2-. and of HO2. separately. Whatever the nitrone, our results clearly show that the EPR signals of the nitrone/superoxide spin adducts observed in aqueous media were essentially due to the trapping of the protonated species HO2
Mesoscopic model for soft flowing systems with tunable viscosity ratio
We propose a mesoscopic model of binary fluid mixtures with tunable viscosity
ratio based on the two-range pseudo-potential lattice Boltzmann method, for the
simulation of soft flowing systems. In addition to the short range repulsive
interaction between species in the classical single-range model, a competing
mechanism between the short range attractive and mid-range repulsive
interactions is imposed within each species. Besides extending the range of
attainable surface tension as compared with the single-range model, the
proposed scheme is also shown to achieve a positive disjoining pressure,
independently of the viscosity ratio. The latter property is crucial for many
microfluidic applications involving a collection of disperse droplets with a
different viscosity from the continuum phase. As a preliminary application, the
relative effective viscosity of a pressure-driven emulsion in a planar channel
is computed.Comment: 14page
Regularized lattice Boltzmann Multicomponent models for low Capillary and Reynolds microfluidics flows
We present a regularized version of the color gradient lattice Boltzmann (LB)
scheme for the simulation of droplet formation in microfluidic devices of
experimental relevance. The regularized version is shown to provide
computationally efficient access to Capillary number regimes relevant to
droplet generation via microfluidic devices, such as flow-focusers and the more
recent microfluidic step emulsifier devices.Comment: 9 pages, 5 figure
Different regimes of the uniaxial elongation of electrically charged viscoelastic jets due to dissipative air drag
We investigate the effects of dissipative air drag on the dynamics of
electrified jets in the initial stage of the electrospinning process. The main
idea is to use a Brownian noise to model air drag effects on the uniaxial
elongation of the jets. The developed numerical model is used to probe the
dynamics of electrified polymer jets at different conditions of air drag force,
showing that the dynamics of the charged jet is strongly biased by the presence
of air drag forces. This study provides prospective beneficial implications for
improving forthcoming electrospinning experiments.Comment: 12 pages, 6 figure
- …
