13 research outputs found

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes

    Improving Oxygen Conditions in the Deeper Parts of Bornholm Sea by Pumped Injection of Winter Water

    No full text
    Vertical diffusivity and oxygen consumption in the basin water, the water below the sill level at about 59 m depth, have been estimated by applying budget methods to monitoring data from hydrographical stations BY4 and BY5 for periods without water renewal. From the vertical diffusivity, the mean rate of work against the buoyancy forces below 65 m depth is estimated to about 0.10 mW m(−2). This is slightly higher than published values for East Gotland Sea. The horizontally averaged vertical diffusivity κ can be approximated by the expression κ = a(0)N(−1) where N is the buoyancy frequency and a(0) ≈ 1.25 × 10(−7) m(2) s(−2), which is similar to values for a(0) used for depths below the halocline in Baltic proper circulation models for long-term simulations. The contemporary mean rate of oxygen consumption in the basin water is about 75 g O(2) m(−2) year(−1), which corresponds to an oxidation of 28 g C m(−2) year(−1). The oxygen consumption in the Bornholm Basin doubled from the 1970s to the 2000s, which qualitatively explains the observed increasing frequency and vertical extent of anoxia and hypoxia in the basin water in records from the end of the 1950s to present time. A horizontally averaged vertical advection–diffusion model of the basin water is used to calculate the effects on stratification and oxygen concentration by a forced pump-driven vertical convection. It is shown that the residence time of the basin water may be reduced by pumping down and mixing the so-called winter water into the deepwater. With the present rate of oxygen consumption, a pumped flux of about 25 km(3) year(−1) would be sufficient to keep the oxygen concentration in the deepwater above 2 mL O(2) L(−1)

    The Role of Electrochemistry in Environmental Control

    No full text
    corecore