6 research outputs found

    Proboscis infection route of Beauveria bassiana triggers early death of Anopheles mosquito

    Get PDF
    application/pdfEntomopathogenic fungi are known to control vector mosquito populations. Thus, understanding the infection dynamics of entomopathogenic fungi is crucial for the effective control of insect pests such as mosquitoes. We investigated the dynamics of Beauveria bassiana s.l. 60-2 infection of Anopheles stephensi by exposing the mosquito to fungus-impregnated filter paper through two infection routes and then comparing the mortality and extent of infection. Fungal development was observed after using this inoculation method with both the tarsus route and the proboscis route, but early mosquito death occurred only after infection through the proboscis route. Fungal hyphae invaded almost all the tissues and organs before or after the death of the host, and fungal invasion of the brain was highly correlated with mortality. Moreover, although all mosquitoes that were alive at various time points after inoculation showed no fungal infection in the brain, fungal infection was detected in the brain in all dead mosquitoes. Our results suggest that fungal invasion of the brain represents one of the factors affecting mortality, and that the proboscis route of infection is critical for the early death of vector mosquitoes.journal articl

    Polyphasic Analysis of Intraspecific Diversity in Epicoccum nigrum Warrants Reclassification into Separate Species

    Get PDF
    BACKGROUND: Epicoccum nigrum Link (syn. E. purpurascens Ehrenb. ex Schlecht) is a saprophytic ascomycete distributed worldwide which colonizes a myriad of substrates. This fungus has been known as a biological control agent for plant pathogens and produces a variety of secondary metabolites with important biological activities as well as biotechnological application. E. nigrum produces darkly pigmented muriform conidia on short conidiophores on sporodochia and is a genotypically and phenotypically highly variable species. Since different isolates identified as E. nigrum have been evaluated as biological control agents and used for biocompound production, it is highly desirable that this species name refers to only one lineage. However, according to morphological and genetic variation, E. nigrum present two genotypes that may comprise more than one species. METHODOLOGY/PRINCIPAL FINDINGS: We report the application of combined molecular (ITS and β-tubulin gene sequence analysis, PCR-RFLP and AFLP techniques), morphometric, physiological, genetic compatibility and recombination analysis to study the taxonomic relationships within an endophytic population that has been identified as E. nigrum. This combined analysis established two genotypes showing morphological, physiological and genetic divergence as well as genetic incompatibility characterized by colony inhibition, strongly indicating that these genotypes correspond to different species. Genotype 1 corresponds to E. nigrum while genotype 2 represents a new species, referred to in this study as Epicoccum sp. CONCLUSIONS/SIGNIFICANCE: This research contributes to the knowledge of the Epicoccum genus and asserts that the classification of E. nigrum as a single variable species should be reassessed. In fact, based on the polyphasic approach we suggest the occurrence of cryptic species within E. nigrum and also that many of the sequences deposited as E. nigrum in GenBank and culture collection of microbial strains should be reclassified, including the reference strain CBS 161.73 sequenced in this work. In addition, this study provides valuable tools for differentiation of Epicoccum species

    Normal Aging of the Cardiovascular System

    No full text

    WTO must ban harmful fisheries subsidies

    No full text
    corecore