27,774 research outputs found

    Feasibility Evaluation of Commercially Available Video Conferencing Devices to Technically Direct Untrained Nonmedical Personnel to Perform a Rapid Trauma Ultrasound Examination.

    Get PDF
    Introduction: Point-of-care ultrasound (POCUS) is a rapidly expanding discipline that has proven to be a valuable modality in the hospital setting. Recent evidence has demonstrated the utility of commercially available video conferencing technologies, namely, FaceTime (Apple Inc, Cupertino, CA, USA) and Google Glass (Google Inc, Mountain View, CA, USA), to allow an expert POCUS examiner to remotely guide a novice medical professional. However, few studies have evaluated the ability to use these teleultrasound technologies to guide a nonmedical novice to perform an acute care POCUS examination for cardiac, pulmonary, and abdominal assessments. Additionally, few studies have shown the ability of a POCUS-trained cardiac anesthesiologist to perform the role of an expert instructor. This study sought to evaluate the ability of a POCUS-trained anesthesiologist to remotely guide a nonmedically trained participant to perform an acute care POCUS examination. Methods: A total of 21 nonmedically trained undergraduate students who had no prior ultrasound experience were recruited to perform a three-part ultrasound examination on a standardized patient with the guidance of a remote expert who was a POCUS-trained cardiac anesthesiologist. The examination included the following acute care POCUS topics: (1) cardiac function via parasternal long/short axis views, (2) pneumothorax assessment via pleural sliding exam via anterior lung views, and (3) abdominal free fluid exam via right upper quadrant abdominal view. Each examiner was given a handout with static images of probe placement and actual ultrasound images for the three views. After a brief 8 min tutorial on the teleultrasound technologies, a connection was established with the expert, and they were guided through the acute care POCUS exam. Each view was deemed to be complete when the expert sonographer was satisfied with the obtained image or if the expert sonographer determined that the image could not be obtained after 5 min. Image quality was scored on a previously validated 0 to 4 grading scale. The entire session was recorded, and the image quality was scored during the exam by the remote expert instructor as well as by a separate POCUS-trained, blinded expert anesthesiologist. Results: A total of 21 subjects completed the study. The average total time for the exam was 8.5 min (standard deviation = 4.6). A comparison between the live expert examiner and the blinded postexam reviewer showed a 100% agreement between image interpretations. A review of the exams rated as three or higher demonstrated that 87% of abdominal, 90% of cardiac, and 95% of pulmonary exams achieved this level of image quality. A satisfaction survey of the novice users demonstrated higher ease of following commands for the cardiac and pulmonary exams compared to the abdominal exam. Conclusions: The results from this pilot study demonstrate that nonmedically trained individuals can be guided to complete a relevant ultrasound examination within a short period. Further evaluation of using telemedicine technologies to promote POCUS should be evaluated

    Panchromatic properties of galaxies in wide-field optical spectroscopic and photometric surveys

    Full text link
    The past 15 years have seen an explosion in the number of redshifts recovered via wide area spectroscopic surveys. At the current time there are approximately 2million spectroscopic galaxy redshifts known (and rising) which represents an extraordinary growth since the pioneering work of Marc Davis and John Huchra. Similarly there has been a parallel explosion in wavelength coverage with imaging surveys progressing from single band, to multi-band, to truly multiwavelength or pan-chromatic involving the coordination of multiple facilities. With these empirically motivated studies has come a wealth of new discoveries impacting almost all areas of astrophysics. Today individual surveys, as best demonstrated by the Sloan Digital Sky Survey, now rank shoulder-to-shoulder alongside major facilities. In the coming years this trend is set to continue as we being the process of designing and conducting the next generation of spectroscopic surveys supported by multi-facility wavelength coverage.Comment: Invited review article to be published in Proceedings of IAU Symposium 284 on "The Spectral Energy Distribution of Galaxies", (Eds: R.J.Tuffs & C.C.Popescu

    A List of Bright Interferometric Calibrators measured at the ESO VLTI

    Full text link
    In a previous publication (Richichi & Percheron 2005) we described a program of observations of candidate calibrator stars at the ESO Very Large Telescope Interferometer (VLTI), and presented the main results from a statistical point of view. In the present paper, we concentrate on establishing a new homogeneous group of bright interferometric calibrators, based entirely on publicly available K-band VLTI observations carried out with the VINCI instrument up to July 2004. For this, we have defined a number of selection criteria for the quality and volume of the observations, and we have accordingly selected a list of 17 primary and 47 secondary calibrators. We have developed an approach to a robust global fit for the angular diameters using the whole volume of quality-controlled data, largely independent of a priori assumptions. Our results have been compared with direct measurements, and indirect estimates based on spectrophotometric methods, and general agreement is found within the combined uncertainties. The stars in our list cover the range K=-2.9 to +3.0 mag in brightness, and 1.3 to 20.5 milliarcseconds in uniform-disk diameter. The relative accuracy of the angular diameter values is on average 0.4% and 2% for the primary and secondary calibrators respectively. Our calibrators are well suited for interferometric observations in the near-infrared on baselines between ~20m and ~200m, and their accuracy is superior, at least for the primary calibrators, to other similar catalogues. Therefore, the present list of calibrators has the potential to lead to significantly improved interferometric scientific results

    Inverting Ray-Knight identity

    Full text link
    We provide a short proof of the Ray-Knight second generalized Theorem, using a martingale which can be seen (on the positive quadrant) as the Radon-Nikodym derivative of the reversed vertex-reinforced jump process measure with respect to the Markov jump process with the same conductances. Next we show that a variant of this process provides an inversion of that Ray-Knight identity. We give a similar result for the Ray-Knight first generalized Theorem.Comment: 18 page

    Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    Full text link
    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN

    Photometric redshifts for the CFHTLS T0004 Deep and Wide fields

    Get PDF
    We compute photometric redshifts based on the template-fitting method in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u*,g',r',i',z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three Wide fields. Our photometric redshifts are calibrated with and compared to 16,983 high-quality spectroscopic redshifts from several surveys. We find a dispersion of 0.028 and an outlier rate of 3.5% in the Deep field at i'AB < 24 and a dispersion of 0.036 and an outlier rate of 2.8% in the Wide field at i'AB < 22.5. Beyond i'AB = 22.5 in the Wide field the number of outliers rises from 5% to 10% at i'AB<23 and i'AB<24 respectively. For the Wide sample, we find the systematic redshift bias keeps below 1% to i'AB < 22.5, whereas we find no significant bias in the Deep field. We investigated the effect of tile-to-tile photometric variations and demonstrate that the accuracy of our photometric redshifts is reduced by at most 21%. We separate stars from galaxies using both the size and colour information, reducing the contamination by stars in our catalogues from 50% to 8% at i'AB < 22.5 in fields with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release include 592,891 (i'AB < 22.5) and 244,701 (i'AB < 24) reliable galaxy photometric redshifts in the Wide and Deep fields, respectively.Comment: 18 pages, 17 figure

    The Canada-France deep fields survey-I: 100,000 galaxies, 1 deg^2: a precise measurement of \omega(\theta) to IAB~25

    Full text link
    (abridged) Using the UH8K mosaic camera, we have measured the angular correlation function \omega(\theta) for 100,000 galaxies over four widely separated fields totalling ~1\deg^2 and reaching IAB~25.5. With this sample we investigate the dependence of \omega(\theta) at 1', A_\omega(1'), on sample median IAB magnitude in the range 19.5<I(AB-med)<24. Our results show that A_\omega(1') decreases monotonically to IAB~25. At bright magnitudes, \omega(\theta) is consistent with a power-law of slope \delta = -0.8 for 0.2'<\theta<3.0' but at fainter magnitudes we find \delta ~ -0.6. At the 3\sigma level, our observations are still consistent with \delta=-0.8. Furthermore, in the magnitude ranges 18.5<IAB<24.0 and 18.5<IAB<23.0 we find galaxies with 2.6<(V-I)AB<2.9 have A_\omega(1')'s which are ~10x higher than field values. We demonstrate that our model redshift distributions for the faint galaxy population are in good agreement with current spectroscopic observations. Using these predictions, we find that for low-omega cosmologies and assuming r_0=4.3/h Mpc, in the range 19.5<I(AB-med)<22, the growth of galaxy clustering is \epsilon~0. However, at 22<I(AB-med)<24.0, our observations are consistent with \epsilon>1. Models with \epsilon~0 cannot simultaneously match both bright and faint measurements of A_\omega(1`). We show how this result is a natural consequence of the ``bias-free'' nature of the \epsilon formalism and is consistent with the field galaxy population in the range 22.0<IAB<24.0 being dominated by galaxies of low intrinsic luminosity.Comment: 20 pages, 21 figures, requires natbib.sty, accepted for publication in Astronomy and Astrophysic

    The Coarse Geometry of Merger Trees in \Lambda CDM

    Full text link
    We introduce the contour process to describe the geometrical properties of merger trees. The contour process produces a one-dimensional object, the contour walk, which is a translation of the merger tree. We portray the contour walk through its length and action. The length is proportional to to the number of progenitors in the tree, and the action can be interpreted as a proxy of the mean length of a branch in a merger tree. We obtain the contour walk for merger trees extracted from the public database of the Millennium Run and also for merger trees constructed with a public Monte-Carlo code which implements a Markovian algorithm. The trees correspond to halos of final masses between 10^{11} h^{-1} M_sol and 10^{14} h^{-1} M_sol. We study how the length and action of the walks evolve with the mass of the final halo. In all the cases, except for the action measured from Markovian trees, we find a transitional scale around 3 \times 10^{12} h^{-1} M_sol. As a general trend the length and action measured from the Markovian trees show a large scatter in comparison with the case of the Millennium Run trees.Comment: 7 pages, 5 figures, submitted to MNRA
    corecore