495 research outputs found
Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions
The magnitude of the global terrestrial carbon pool and related fluxes to and from the atmosphere are still poorly known. The European Space Agency P-band radar BIOMASS mission will help to reduce this uncertainty by providing unprecedented information on the distribution of forest above-ground biomass (AGB), particularly in the tropics where the gaps are greatest and knowledge is most needed. Mission selection was made in full knowledge of coverage restrictions over Europe, North and Central America imposed by the US Department of Defense Space Objects Tracking Radar (SOTR) stations. Under these restrictions, only 3% of AGB carbon stock coverage is lost in the tropical forest biome, with this biome representing 66% of global AGB carbon stocks in 2005. The loss is more significant in the temperate (72%), boreal (37%) and subtropical (29%) biomes, with these accounting for approximately 12%, 15% and 7%, respectively, of the global forest AGB carbon stocks. In terms of global carbon cycle modelling, there is minimal impact in areas of high AGB density, since mainly lower biomass forests in cooler climates are affected. In addition, most areas affected by the SOTR stations are located in industrialized countries with well-developed national forest inventories, so that extensive information on AGB is already available. Hence the main scientific objectives of the BIOMASS mission are not seriously compromised. Furthermore, several space sensors that can estimate AGB in lower biomass forests are in orbit or planned for launch between now and the launch of BIOMASS in 2021, which will help to fill the gaps in mission coverage
Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions
We report on a search for metastable positively and negatively charged states
of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864.
We have sampled approximately six billion 10% most central Au+Pb interactions
and have observed no strangelet states (baryon number A < 100 droplets of
strange quark matter). We thus set upper limits on the production of these
exotic states at the level of 1-6 x 10^{-8} per central collision. These limits
are the best and most model independent for this colliding system. We discuss
the implications of our results on strangelet production mechanisms, and also
on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover
memorial edition
Mechanisms for a nutrient-conserving carbon pump in a seasonally stratified, temperate continental shelf sea
Continental shelf seas may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through a ‘continental shelf pump’ mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in this temperate, seasonally stratified system. Following the onset of stratification, near-surface biological primary production during spring and summer removed dissolved inorganic carbon and nutrients, and a fraction of the sinking particulate organic matter was subsequently remineralised beneath the thermocline. Water column inventories of these variables throughout 1.5 seasonal cycles, corrected for air-sea CO2 exchange and sedimentary denitrification and anammox, isolated the combined effect of net community production (NCP) and remineralisation on the inorganic macronutrient inventories. Overall inorganic inventory changes suggested that a significant fraction (>50%) of the annual NCP of around 3 mol-C m–2 yr–1 appeared to be stored within a long-lived organic matter (OM) pool with a lifetime of several months or more. Moreover, transfers into and out of this pool appeared not to be in steady state over the one full seasonal cycle sampled. Accumulation of such a long-lived and potentially C-rich OM pool is suggested to be at least partially responsible for the estimated net air-to-sea CO2 flux of ∼1.3 mol-C m–2 yr–1 at our study site, while providing a mechanism through which a nutrient-conserving continental shelf pump for CO2 could potentially operate in this and other similar regions
Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable
All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios
The Reliability of Global and Hemispheric Surface Temperature Records
The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered. These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data, particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time
Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models
The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free vs. ice-influenced) and bottom depth (shelf vs. deep ocean). The models performed relatively well for the most recent decade and towards the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. . Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling
The West African Monsoon Onset: a concise comparison of definitions
The onset of the West African Monsoon (WAM) marks a vital time for local and regional stakeholders. Whilst the seasonal progression of monsoon winds and the related migration of precipitation from the Guinea Coast towards the Soudan/Sahel is apparent, there exist contrasting man-made definitions of what the WAM onset means. Broadly speaking, onset can be analyzed regionally, locally or over a designated intermediate scale. There are at least eighteen distinct definitions of the WAM onset in publication with little work done on comparing observed onset from different definitions or comparing onset realizations across different datasets and resolutions. Here, nine definitions have been calculated using multiple datasets of different metrics at different resolution. It is found that mean regional onset dates are consistent across multiple datasets and different definitions. There is low inter-annual variability in regional onset suggesting that regional seasonal forecasting of the onset provides few benefits over climatology. In contrast, local onsets show high spatial, inter-annual and inter-definition variability. Furthermore it is found that there is little correlation between local onset dates and regional onset dates across West Africa implying a disharmony between regional measures of onset and the experience on a local scale. The results of this study show that evaluation of seasonal monsoon onset forecasts is far from straightforward. Given a seasonal forecasting model, it is possible to simultaneously have a good and bad prediction of monsoon onset simply through selection of onset definition and observational dataset used for comparison
Recommended from our members
Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993-2011
We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative (CCI) datasets over the period 1993-2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason OC show significant correlation with SST and SSH. We show that the correlation with SST display the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern
Trends in Prevalence of Advanced HIV Disease at Antiretroviral Therapy Enrollment - 10 Countries, 2004-2015.
Monitoring prevalence of advanced human immunodeficiency virus (HIV) disease (i.e., CD4+ T-cell count <200 cells/μL) among persons starting antiretroviral therapy (ART) is important to understand ART program outcomes, inform HIV prevention strategy, and forecast need for adjunctive therapies.*,†,§ To assess trends in prevalence of advanced disease at ART initiation in 10 high-burden countries during 2004-2015, records of 694,138 ART enrollees aged ≥15 years from 797 ART facilities were analyzed. Availability of national electronic medical record systems allowed up-to-date evaluation of trends in Haiti (2004-2015), Mozambique (2004-2014), and Namibia (2004-2012), where prevalence of advanced disease at ART initiation declined from 75% to 34% (p<0.001), 73% to 37% (p<0.001), and 80% to 41% (p<0.001), respectively. Significant declines in prevalence of advanced disease during 2004-2011 were observed in Nigeria, Swaziland, Uganda, Vietnam, and Zimbabwe. The encouraging declines in prevalence of advanced disease at ART enrollment are likely due to scale-up of testing and treatment services and ART-eligibility guidelines encouraging earlier ART initiation. However, in 2015, approximately a third of new ART patients still initiated ART with advanced HIV disease. To reduce prevalence of advanced disease at ART initiation, adoption of World Health Organization (WHO)-recommended "treat-all" guidelines and strategies to facilitate earlier HIV testing and treatment are needed to reduce HIV-related mortality and HIV incidence
Towards a framework for attention cueing in instructional animations: Guidelines for research and design
This paper examines the transferability of successful cueing approaches from text and static visualization research to animations. Theories of visual attention and learning as
well as empirical evidence for the instructional effectiveness of attention cueing are reviewed and, based on Mayer’s theory of multimedia learning, a framework was developed for classifying three functions for cueing: (1) selection—cues guide attention
to specific locations, (2) organization—cues emphasize structure, and (3) integration—cues explicate relations between and within elements. The framework was used to structure the
discussion of studies on cueing in animations. It is concluded that attentional cues may facilitate the selection of information in animations and sometimes improve learning, whereas organizational and relational cueing requires more consideration on how to enhance understanding. Consequently, it is suggested to develop cues that work in animations rather than borrowing effective cues from static representations. Guidelines for future research on attention cueing in animations are presented
- …
