4,504 research outputs found
CCL19-sorted mature dendritic cells have enhanced lymph node migratory capacity and function
No abstract available
Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo
We present the first in vivo study of the long-term fate and potential of early-migrating and late-migrating mesencephalic neural crest cell populations, by performing isochronic and heterochronic quail-to-chick grafts. Both early- and late-migrating populations form melanocytes, neurons, glia, cartilage and bone in isochronic, isotopic chimeras, showing that neither population is lineage-restricted. The early-migrating population distributes both dorsally and ventrally during normal development, while the late-migrating population is confined dorsally and forms much less cartilage and bone. When the late-migrating population is substituted heterochronically for the early-migrating population, it contributes extensively to ventral derivatives such as jaw cartilage and bone. Conversely, when the early-migrating population is substituted heterochronically for the late-migrating population, it no longer contributes to the jaw skeleton and only forms dorsal derivatives. When the late-migrating population is grafted into a late-stage host whose neural crest had previously been ablated, it migrates ventrally into the jaws. Thus, the dorsal fate restriction of the late-migrating mesencephalic neural crest cell population in normal development is due to the presence of earlier-migrating neural crest cells, rather than to any change in the environment or to any intrinsic difference in migratory ability or potential between early- and late-migrating cell populations. These results highlight the plasticity of the neural crest and show that its fate is determined primarily by the environment
A Robust Method for Detecting Interdependences: Application to Intracranially Recorded EEG
We present a measure for characterizing statistical relationships between two
time sequences. In contrast to commonly used measures like cross-correlations,
coherence and mutual information, the proposed measure is non-symmetric and
provides information about the direction of interdependence. It is closely
related to recent attempts to detect generalized synchronization. However, we
do not assume a strict functional relationship between the two time sequences
and try to define the measure so as to be robust against noise, and to detect
also weak interdependences. We apply our measure to intracranially recorded
electroencephalograms of patients suffering from severe epilepsies.Comment: 29 pages, 5 figures, paper accepted for publication in Physica
Spatio-Temporal Differences in Dystrophin Dynamics at mRNA and Protein Levels Revealed by a Novel FlipTrap Line
Dystrophin (Dmd) is a structural protein that links the extracellular matrix to actin filaments in muscle fibers and is required for the maintenance of muscles integrity. Mutations in Dmd lead to muscular dystrophies in humans and other vertebrates. Here, we report the characterization of a zebrafish gene trap line that fluorescently labels the endogenous Dmd protein (Dmd-citrine, Gt(dmd-citrine) ^(ct90a)). We show that the Dmd-citrine line recapitulates endogenous dmd transcript expression and Dmd protein localization. Using this Dmd-citrine line, we follow Dmd localization to the myosepta in real-time using time-lapse microscopy, and find that the accumulation of Dmd protein at the transverse myosepta coincides with the onset of myotome formation, a critical stage in muscle maturation. We observed that Dmd protein localizes specifically to the myosepta prior to dmd mRNA localization. Additionally, we demonstrate that the Dmd-citrine line can be used to assess muscular dystrophy following both genetic and physical disruptions of the muscle
Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration
We present an imaging and image reconstruction pipeline that captures the dynamic three-dimensional beating motion of the live embryonic zebrafish heart at subcellular resolution. Live, intact zebrafish embryos were imaged using 2-photon light sheet microscopy, which offers deep and fast imaging at 70 frames per second, and the individual optical sections were assembled into a full 4D reconstruction of the beating heart using an optimized retrospective image registration algorithm. This imaging and reconstruction platform permitted us to visualize protein expression patterns at endogenous concentrations in zebrafish gene trap lines
Interactions between groundwater and surface water at river banks and the confluence of rivers
Riparian vegetation depends on hydrological resources and has to adapt to changes in water levels and soil moisture conditions. The origin and mixing of water in the streamside corridor were studied in detail. The development of riparian woodland often reflects the evolution of hydrological events. River water levels and topography are certainly the main causes of the exchange between groundwater and river water through the riverbank. Stable isotopes, such as 18O, are useful tools that allow water movement to be traced. Two main water sources are typically present: (i) river water, depleted of heavy isotopes, originating upstream, and (ii) groundwater, which comes mainly from the local rainfall. On the Garonne River bank field site downstream of Toulouse, the mixing of these two waters is variable, and depends mainly on the river level and the geographical position. The output of the groundwater into the river water is not diffuse on a large scale, but localised at few places. At the confluence of two rivers, the water-mixing area is more complex because of the presence of a third source of water. In this situation, groundwater supports the hydrologic pressure of both rivers until they merge, this pressure could influence its outflow. Two cases will be presented. The first is the confluence of the Garonne and the Ariège Rivers in the south-west of France, both rivers coming from the slopes of the Pyrénées mountains. Localised groundwater outputs have been detected about 200 m before the confluence. The second case presented is the confluence of the Ganges and the Yamuna Rivers in the north of India, downstream of the city of Allahabad. These rivers are the two main tributaries of the Ganges, and both originate in the Himalayas. A strong stream of groundwater output was measured at the point of confluence
The Neural Crest Migrating into the Twenty-First Century
From the initial discovery of the neural crest over 150 years ago to the seminal studies of Le Douarin and colleagues in the latter part of the twentieth century, understanding of the neural crest has moved from the descriptive to the experimental. Now, in the twenty-first century, neural crest research has migrated into the genomic age. Here, we reflect upon the major advances in neural crest biology and the open questions that will continue to make research on this incredible vertebrate cell type an important subject in developmental biology for the century to come
Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates
We investigate the possibility that prebiotic homochirality can be achieved
exclusively through chiral-selective reaction rate parameters without any other
explicit mechanism for chiral bias. Specifically, we examine an open network of
polymerization reactions, where the reaction rates can have chiral-selective
values. The reactions are neither autocatalytic nor do they contain explicit
enantiomeric cross-inhibition terms. We are thus investigating how rare a set
of chiral-selective reaction rates needs to be in order to generate a
reasonable amount of chiral bias. We quantify our results adopting a
statistical approach: varying both the mean value and the rms dispersion of the
relevant reaction rates, we show that moderate to high levels of chiral excess
can be achieved with fairly small chiral bias, below 10%. Considering the
various unknowns related to prebiotic chemical networks in early Earth and the
dependence of reaction rates to environmental properties such as temperature
and pressure variations, we argue that homochirality could have been achieved
from moderate amounts of chiral selectivity in the reaction rates.Comment: 15 pages, 6 figures, accepted for publication in Origins of Life and
Evolution of Biosphere
- …
