35 research outputs found
Bioavailability of iodine in the UK-Peak District environment and its human bioaccessibility: an assessment of the causes of historical goitre in this area
Iodine is an essential micronutrient for human health. Its deficiency causes a number of functional and developmental abnormalities such as goitre. The limestone region of Derbyshire, UK was goitre-endemic until it declined from the 1930s and the reason for this has escaped a conclusive explanation. The present study investigates the cause(s) of goitre in the UK-Peak District area through an assessment of iodine in terms of its environmental mobility, bioavailability, uptake into the food chain and human bioaccessibility. The goitre-endemic limestone area is compared with the background millstone grit area of the UK-Peak District. The findings of this study show that ‘total’ environmental iodine is not linked to goitre in the limestone area, but the governing factors include iodine mobility, bioavailability and bioaccessibility. Compared with the millstone grit area, higher soil pH and calcium content of the limestone area restrict iodine mobility in this area, also soil organic carbon in the limestone area is influential in binding the iodine to the soil. Higher calcium content in the limestone area is an important factor in terms of strongly fixing the iodine to the soil. Higher iodine bioaccessibility in the millstone grit than the limestone area suggests that its oral bioaccessibility is restricted in the limestone area. Iodine taken up by plant roots is transported freely into the aerial plant parts in the millstone grit area unlike the limestone area, thus providing higher iodine into the human food chain in the millstone grit area through grazing animals unlike the goitre-prevalent limestone area
Functional imaging using fluorine ((19)F) MR methods: basic concepts
Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine ((19)F) MRI in biomedical research to study functional changes during disease states. (19)F MRI represents an instrumental tool for the quantification of exogenous (19)F substances in vivo. One of the major benefits of (19)F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous (19)F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of (19)F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models. This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis
Invited Review: Decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins – and how these lead to neurodegeneration – remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression
Considerations for Assessment of Reproductive and Developmental Toxicity of Oligonucleotide-Based Therapeutics
Multi-scale quantification of the effects of temperature on size at maturity in the American lobster ( Homarus americanus )
Two Methods for Decellularization of Plant Tissues for Tissue Engineering Applications
Two Methods for Decellularization of Plant Tissues for Tissue Engineering Applications
Occupational exposure to ultraviolet radiation: The duality dilemma
Human exposure to ultraviolet (UV) radiation is a component of everyday life and a significant hazard for outdoor workers. In addition, a large range of artificial sources also has the potential to provide extreme occupational UV exposure. Even though the human health risks of overexposure to UV are well documented, to date relatively little is known quantitatively about UV exposure. For example, the evidence indicates that workers who are exposed to particular sources (for example, welding arcs) are exposed to extreme UV exposures, despite the use of current control measures. In contrast, increasing evidence points to significant health impacts resulting from underexposure to UV, particularly with the production (or more correctly lack of production) of vitamin D in the skin. The latter poses a serious issue for the work-force, with specific risks for workers lacking adequate sun exposure-underground miners, long-haul flight crews, shift workers, and perhaps indoor workers. Using a risk-management approach, this paper provides a comprehensive review of occupational UV sources, health impact of occupational UV exposure, occupational exposure standards, and levels of exposure in various settings, and discusses the appropriate control measures. In addition, the duality aspect of health impacts from overexposure and underexposure to UV and the associated occupational health implications are specifically explored
