14,316 research outputs found

    On the missing 2175 Angstroem-bump in the Calzetti extinction curve

    Full text link
    The aim of the paper is to give a physical explanation of the absence of the feature in the Calzetti extinction curve. We analyze the dust attenuation of a homogeneous source seen through a distant inhomogeneous distant screen. The inhomogeneities are described through an idealized isothermal turbulent medium where the probability distribution function (PDF) of the column density is log-normal. In addition it is assumed that below a certain critical column density the carriers of the extinction bump at 2175 Angstroem are being destroyed by the ambient UV radiation field. Turbulence is found to be a natural explanation not only of the flatter curvature of the Calzetti extinction curve but also of the missing bump provided the critical column density is N_H >= 10^21 cm^-2. The density contrast needed to explain both characteristics is well consistent with the Mach number of the cold neutral medium of our own Galaxy which suggests a density contrast sigma_(rho/) 6.Comment: 6 pages, 6 figures accepted for publication in A&A, section

    Brainstem metastases treated with Gamma Knife stereotactic radiosurgery: the Indiana University Health experience

    Get PDF
    Brainstem metastases offer a unique challenge in cancer treatment, yet stereotactic radiosurgery (SRS) has proven to be an effective modality in treating these tumors. This report discusses the clinical outcomes of patients with brainstem metastases treated at Indiana University with Gamma Knife (GK) radiosurgery from 2008 to 2016. 19 brainstem metastases from 14 patients who had follow-up brain imaging were identified. Median tumor volume was 0.04 cc (range: 0.01-2.0 cc). Median prescribed dose was 17.5 Gy to the 50% isodose line (range: 14-22 Gy). Median survival after GK SRS treatment to brainstem lesion was 17.2 months (range: 2.8-45.6 months). The experience at Indiana University confirms the safety and efficacy of range of GK SRS prescription doses (14-22 Gy) to brainstem metastases

    Surgery formulae for finite type invariants of rational homology 3--spheres

    Full text link
    We first present three graphic surgery formulae for the degree nn part ZnZ_n of the Kontsevich-Kuperberg-Thurston universal finite type invariant of rational homology spheres. Each of these three formulae determines an alternate sum of the form IN(1)IZn(MI)\sum_{I \subset N} (-1)^{\sharp I}Z_n(M_I) where NN is the set of components of a framed algebraically split link LL in a rational homology sphere MM, and MIM_I denotes the manifold resulting from the Dehn surgeries on the components of II. The first formula treats the case when LL is a boundary link with nn components, while the second one is for 3n3n--component algebraically split links. In the third formula, the link LL has 2n2n components and the Milnor triple linking numbers of its 3--component sublinks vanish. The presented formulae are then applied to the study of the variation of ZnZ_n under a p/qp/q-surgery on a knot KK. This variation is a degree nn polynomial in q/pq/p when the class of q/pq/p in \QQ/\ZZ is fixed, and the coefficients of these polynomials are knot invariants, for which various topological properties or topological definitions are given.Comment: 51 pages, uses pstrick

    Polarization tomography of metallic nanohole arrays

    Full text link
    We report polarization tomography experiments on metallic nanohole arrays with square and hexagonal symmetry. As a main result, we find that a fully polarized input beam is partly depolarized after transmission through a nanohole array. This loss of polarization coherence is found to be anisotropic, i.e. it depends on the polarization state of the input beam. The depolarization is ascribed to a combination of two factors: i) the nonlocal response of the array due to surface plasmon propagation, ii) the non-plane wave nature of a practical input beam.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    Magnetic excitations of the Cu2+^{2+} quantum spin chain in Sr3_3CuPtO6_6

    Get PDF
    We report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr3_3CuPtO6_6. Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistent with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.Comment: 9 pages, 5 figure

    Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states

    Full text link
    Many-body correlations and macroscopic quantum behaviors are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo model which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive `charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin-1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing an unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we reveal the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.Comment: Letter (5 pages, 4 figures) and Methods (10 pages, 6 figures
    corecore