13 research outputs found
Limited Effect of Dietary Saturated Fat on Plasma Saturated Fat in the Context of a Low Carbohydrate Diet
We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF2α, a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (−32%). There was a significant inverse correlation between changes in urine 8-iso PGF2α and PL ARA on both CRD (r = −0.82 CRD-SFA; r = −0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA
Vitamin D deficiency as a risk factor for cystic fibrosis-related diabetes in the Scandinavian Cystic Fibrosis Nutritional Study
A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering
Standardized Chinese Formula Xin-Ke-Shu inhibits the myocardium Ca2+ overloading and metabolic alternations in isoproterenol-induced myocardial infarction rats
Angiogenesis Modulation by Arachidonic Acid-derived Lipids: Positive and Negative Regulators of Angiogenesis
Practice guidelines for outpatient parenteral antimicrobial therapy
These guidelines were formulated to assist physicians and other health care professionals with various aspects of the administration of outpatient parenteral antimicrobial therapy (OPAT). Although there are many reassuring retrospective studies on the efficacy and safety of OPAT, few prospective studies have been conducted to compare the risks and outcomes for patients who receive treatment as outpatients rather than as inpatients. Because truly evidence-based studies are lacking, the present guidelines are formulated from the collective experience of the committee members and advisors from related organizations
Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): an open-label extension study
Background
Tezacaftor–ivacaftor is an approved cystic fibrosis transmembrane conductance regulator (CFTR) modulator shown to be efficacious and generally safe and well tolerated over 8–24 weeks in phase 3 clinical studies in participants aged 12 years or older with cystic fibrosis homozygous for the Phe508del CFTR mutation (F/F; study 661-106 [EVOLVE]) or heterozygous for the Phe508del CFTR mutation and a residual function mutation (F/RF; study 661-108 [EXPAND]). Longer-term (>24 weeks) safety and efficacy of tezacaftor–ivacaftor has not been assessed in clinical studies. Here, we present results of study 661-110 (EXTEND), a 96-week open-label extension study that assessed long-term safety, tolerability, and efficacy of tezacaftor–ivacaftor in participants aged 12 years or older with cystic fibrosis who were homozygous or heterozygous for the Phe508del CFTR mutation.
Methods
Study 661-110 was a 96-week, phase 3, multicentre, open-label study at 170 clinical research sites in Australia, Europe, Israel, and North America. Participants were aged 12 years or older, had cystic fibrosis, were homozygous or heterozygous for Phe508del CFTR, and completed one of six parent studies of tezacaftor–ivacaftor: studies 661-103, 661-106, 661-107, 661-108, 661-109, and 661-111. Participants received oral tezacaftor 100 mg once daily and oral ivacaftor 150 mg once every 12 h for up to 96 weeks. The primary endpoint was safety and tolerability. Secondary endpoints were changes in lung function, nutritional parameters, and respiratory symptom scores; pulmonary exacerbations; and pharmacokinetic parameters. A post-hoc analysis assessed the rate of lung function decline in F/F participants who received up to 120 weeks of tezacaftor–ivacaftor in studies 661-106 (F/F) and/or 661-110 compared with a matched cohort of CFTR modulator-untreated historical F/F controls from the Cystic Fibrosis Foundation Patient Registry. Primary safety analyses were done in all participants from all six parent studies who received at least one dose of study drug during this study. This study was registered at ClinicalTrials.gov (NCT02565914).
Findings
Between Aug 31, 2015, to May 31, 2019, 1044 participants were enrolled in study 661-110 from the six parent studies of whom 1042 participants received at least one dose of study drug and were included in the safety set. 995 (95%) participants had at least one TEAE; 22 (2%) had TEAEs leading to discontinuation; and 351 (34%) had serious TEAEs. No deaths occurred during the treatment-emergent period; after the treatment-emergent period, two deaths occurred, which were both deemed unrelated to study drug. F/F (106/110; n=459) and F/RF (108/110; n=226) participants beginning tezacaftor–ivacaftor in study 661-110 had improvements in efficacy endpoints consistent with parent studies; improvements in lung function and nutritional parameters and reductions in pulmonary exacerbations observed in the tezacaftor–ivacaftor groups in the parent studies were generally maintained in study 661-110 for an additional 96 weeks. Pharmacokinetic parameters were also similar to those in the parent studies. The annualised rate of lung function decline was 61·5% (95% CI 35·8 to 86·1) lower in tezacaftor–ivacaftor-treated F/F participants versus untreated matched historical controls.
Interpretation
Tezacaftor–ivacaftor was generally safe, well tolerated, and efficacious for up to 120 weeks, and the safety profile of tezacaftor–ivacaftor in study 661-110 was consistent with cystic fibrosis manifestations and with the safety profiles of the parent studies. The rate of lung function decline was significantly reduced in F/F participants, consistent with cystic fibrosis disease modification. Our results support the clinical benefit of long-term tezacaftor–ivacaftor treatment for people aged 12 years or older with cystic fibrosis with F/F or F/RF genotypes.
Funding
Vertex Pharmaceuticals Incorporated
