8,518 research outputs found
Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers
MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen
On the validity of the reduced Salpeter equation
We adapt a general method to solve both the full and reduced Salpeter
equations and systematically explore the conditions under which these two
equations give equivalent results in meson dynamics. The effects of constituent
mass, angular momentum state, type of interaction, and the nature of
confinement are all considered in an effort to clearly delineate the range of
validity of the reduced Salpeter approximations. We find that for
the solutions are strikingly similar for all
constituent masses. For zero angular momentum states the full and reduced
Salpeter equations give different results for small quark mass especially with
a large additive constant coordinate space potential. We also show that
corrections to heavy-light energy levels can be accurately
computed with the reduced equation.Comment: Latex (uses epsf macro), 24 pages of text, 12 postscript figures
included. Slightly revised version, to appear in Phys. Rev.
Coupling constants and transition potentials for hadronic decay modes of a meson
Within the independent-harmonic-oscillator model for quarks inside a hadron,
a rigorous method is presented for the calculation of coupling constants and
transition potentials for hadronic decay, as needed in a multi-channel
description of mesons.Comment: 19 pages, 4 figure
Instantaneous Bethe-Salpeter equation: utmost analytic approach
The Bethe-Salpeter formalism in the instantaneous approximation for the
interaction kernel entering into the Bethe-Salpeter equation represents a
reasonable framework for the description of bound states within relativistic
quantum field theory. In contrast to its further simplifications (like, for
instance, the so-called reduced Salpeter equation), it allows also the
consideration of bound states composed of "light" constituents. Every
eigenvalue equation with solutions in some linear space may be (approximately)
solved by conversion into an equivalent matrix eigenvalue problem. We
demonstrate that the matrices arising in these representations of the
instantaneous Bethe-Salpeter equation may be found, at least for a wide class
of interactions, in an entirely algebraic manner. The advantages of having the
involved matrices explicitly, i.e., not "contaminated" by errors induced by
numerical computations, at one's disposal are obvious: problems like, for
instance, questions of the stability of eigenvalues may be analyzed more
rigorously; furthermore, for small matrix sizes the eigenvalues may even be
calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.
Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
We report a comparison between two absolute gravimeters: the LNE-SYRTE cold
atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on
different principles of operation: atomic and optical interferometry. Both are
movable which enabled them to participated to the last International Comparison
of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral
comparison took place in the LNE watt balance laboratory and showed an
agreement of 4.3 +/- 6.4 {\mu}Gal
Severe acute respiratory infection with influenza A (H1N1) during pregnancy
The original publication is available at http://www.samj.org.zaABSTRACT FROM JOURNAL: Pregnant women are at high risk of severe acute
respiratory infection if infected with the influenza A (H1N1)
virus. On 14 August 2009 the first complicated H1N1 obstetric
patient was admitted to the obstetric critical care unit (OCCU)
at Tygerberg Hospital with respiratory distress. The clinical
picture was that of bronchopneumonia, and she tested positive
for H1N1. Subsequent pregnant patients admitted to the OCCU
with respiratory compromise or flu symptoms were screened
for the virus.
Eleven days later 13 cases were confirmed. Five patients
had acute lung injury and required ventilation and inotropic
support. Three of the patients with acute lung injury
subsequently died. Three patients required continuous positive
airway pressure (CPAP) support only, with no inotropics
needed. The remaining 5 patients presented early, received
oseltamivir within 48 hours and did not require critical care
admission.
All the patients admitted to the OCCU and the medical
intensive care unit (ICU) initially presented with flu symptoms,
respiratory distress and changes on the chest radiograph
indicating an active diffuse pulmonary parenchymal process.
Six patients underwent uncomplicated caesarean sections for
fetal distress after they were stabilised. Maternal and neonatal
outcomes varied. The key factor appears to be early clinical
diagnosis and oseltamivir within 48 hours of the onset of
symptoms. The demographic data and maternal and fetal
outcomes are set out in Table I
First Order Vortex Dynamics
A non-dissipative model for vortex motion in thin superconductors is
considered. The Lagrangian is a Galilean invariant version of the
Ginzburg--Landau model for time-dependent fields, with kinetic terms linear in
the first time derivatives of the fields. It is shown how, for certain values
of the coupling constants, the field dynamics can be reduced to first order
differential equations for the vortex positions. Two vortices circle around one
another at constant speed and separation in this model.Comment: 22pages, no figures, tex fil
The Network Analysis of Urban Streets: A Primal Approach
The network metaphor in the analysis of urban and territorial cases has a
long tradition especially in transportation/land-use planning and economic
geography. More recently, urban design has brought its contribution by means of
the "space syntax" methodology. All these approaches, though under different
terms like accessibility, proximity, integration,connectivity, cost or effort,
focus on the idea that some places (or streets) are more important than others
because they are more central. The study of centrality in complex
systems,however, originated in other scientific areas, namely in structural
sociology, well before its use in urban studies; moreover, as a structural
property of the system, centrality has never been extensively investigated
metrically in geographic networks as it has been topologically in a wide range
of other relational networks like social, biological or technological. After
two previous works on some structural properties of the dual and primal graph
representations of urban street networks (Porta et al. cond-mat/0411241;
Crucitti et al. physics/0504163), in this paper we provide an in-depth
investigation of centrality in the primal approach as compared to the dual one,
with a special focus on potentials for urban design.Comment: 19 page, 4 figures. Paper related to the paper "The Network Analysis
of Urban Streets: A Dual Approach" cond-mat/041124
Management of trypanosomiasis and leishmaniasis
<p>Background: The current treatments for human African trypanosomiasis (HAT), Chagas disease and leishmaniasis (collectively referred to as the kinetoplastid diseases) are far from ideal but, for some, there has been significant recent progress. For HAT the only advances in treatment over the past two decades have been the introduction of an eflornithine/nifurtimox co-administration and a shorter regime of the old standard melarsoprol.</p>
<p>Sources of data: PubMed.</p>
<p>Areas of Agreement: There is a need for new safe, oral drugs for cost-effective treatment of patients and use in control programmes for all the trypanosomatid diseases.</p>
<p>Areas of controversy: Cutaneous leishmaniasis is not on the agenda and treatments are lagging behind.</p>
<p>Growing points: There are three compounds in development for the treatment of the CNS stage of HAT: fexinidazole, currently due to entry into phase II clinical studies, a benzoxaborole (SCYX-7158) in phase I trials and a diamidine derivative (CPD-0802), in advanced pre-clinical development. For Chagas disease, two anti-fungal triazoles are now in clinical trial. In addition, clinical studies with benznidazole, a drug previously recommended only for acute stage treatment, are close to completion to determine the effectiveness in the treatment of early chronic and indeterminate Chagas disease. For visceral leishmaniasis new formulations, therapeutic switching, in particular AmBisome, and the potential for combinations of established drugs have significantly improved the opportunities for the treatment in the Indian subcontinent, but not in East Africa.</p>
<p>Areas timely for developing research: Improved diagnostic tools are needed to support treatment, for test of cure in clinical trials and for monitoring/surveillance of populations in control programmes.</p>
On the existence and structure of a mush at the inner core boundary of the Earth
It has been suggested about 20 years ago that the liquid close to the inner
core boundary (ICB) is supercooled and that a sizable mushy layer has developed
during the growth of the inner core. The morphological instability of the
liquid-solid interface which usually results in the formation of a mushy zone
has been intensively studied in metallurgy, but the freezing of the inner core
occurs in very unusual conditions: the growth rate is very small, and the
pressure gradient has a key role, the newly formed solid being hotter than the
adjacent liquid. We investigate the linear stability of a solidification front
under such conditions, pointing out the destabilizing role of the thermal and
solutal fields, and the stabilizing role of the pressure gradient. The main
consequence of the very small solidification rate is the importance of
advective transport of solute in liquid, which tends to remove light solute
from the vicinity of the ICB and to suppress supercooling, thus acting against
the destabilization of the solidification front. For plausible phase diagrams
of the core mixture, we nevertheless found that the ICB is likely to be
morphologically unstable, and that a mushy zone might have developed at the
ICB. The thermodynamic thickness of the resulting mushy zone can be
significant, from km to the entire inner core radius, depending on
the phase diagram of the core mixture. However, such a thick mushy zone is
predicted to collapse under its own weight, on a much smaller length scale
( km). We estimate that the interdendritic spacing is probably
smaller than a few tens of meter, and possibly only a few meters
- …
