5,253 research outputs found

    Chaotic Mixing in Three Dimensional Porous Media

    Get PDF
    Under steady flow conditions, the topological complexity inherent to all random 3D porous media imparts complicated flow and transport dynamics. It has been established that this complexity generates persistent chaotic advection via a three-dimensional (3D) fluid mechanical analogue of the baker's map which rapidly accelerates scalar mixing in the presence of molecular diffusion. Hence pore-scale fluid mixing is governed by the interplay between chaotic advection, molecular diffusion and the broad (power-law) distribution of fluid particle travel times which arise from the non-slip condition at pore walls. To understand and quantify mixing in 3D porous media, we consider these processes in a model 3D open porous network and develop a novel stretching continuous time random walk (CTRW) which provides analytic estimates of pore-scale mixing which compare well with direct numerical simulations. We find that chaotic advection inherent to 3D porous media imparts scalar mixing which scales exponentially with longitudinal advection, whereas the topological constraints associated with 2D porous media limits mixing to scale algebraically. These results decipher the role of wide transit time distributions and complex topologies on porous media mixing dynamics, and provide the building blocks for macroscopic models of dilution and mixing which resolve these mechanisms.Comment: 36 page

    An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Taylor & Francis.Metals are of particular importance in relation to water quality, and concern regarding the impact of these contaminants on biodiversity is being encapsulated within the latest water-related legislation such as the Water Framework Directive in Europe and criteria revisions to the Clean Water Act in the United States. This review undertakes an evaluation of the potential of 2-stage wastewater treatment consisting of primary sedimentation and biological treatment in the form of activated sludge processes, to meet more stringent discharge consents that are likely to be introduced as a consequence. The legislation, sources of metals, and mechanisms responsible for their removal are discussed, to elucidate possible pathways by which the performance of conventional processes may be optimized or enhanced. Improvements in effluent quality, achievable by reducing concentrations of suspended solids or biochemical oxygen demand, may also reduce metal concentrations although meeting possible requirements for the removal of copper my be challenging

    The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit

    Full text link
    Recent ATLAS data significantly extend the exclusion limits for supersymmetric particles. We examine the impact of such data on global fits of the constrained minimal supersymmetric standard model (CMSSM) to indirect and cosmological data. We calculate the likelihood map of the ATLAS search, taking into account systematic errors on the signal and on the background. We validate our calculation against the ATLAS determinaton of 95% confidence level exclusion contours. A previous CMSSM global fit is then re-weighted by the likelihood map, which takes a bite at the high probability density region of the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has clarified explanation of our handling of signal systematic

    Oral vinorelbine and cisplatin with concomitant radiotherapy in stage III non-small cell lung cancer (NSCLC): A feasibility study

    Get PDF
    Background: Concurrent chemoradiotherapy has improved survival in inoperable stage III non-small cell lung cancer (NSCLC). This phase I trial was performed in order to establish a dose recommendation for oral vinorelbine in combination with cisplatin and simultaneous radiotherapy. Patients and Methods: Previously untreated patients with stage IIIB NSCLC received concurrent chemoradiotherapy with 66 Gy and 2 cycles of cisplatin and oral vinorelbine which was administered at 3 different levels (40, 50 and 60 mg/m(2)). This was to be followed by 2 cycles of cisplatin/vinorelbine oral consolidation chemotherapy. The study goal was to determine the maximal recommended dose of oral vinorelbine during concurrent treatment. Results: 11 stage IIIB patients were entered into the study. The median radiotherapy dose was 66 Gy. Grade 3-4 toxicity included neutropenia, esophagitis, gastritis and febrile neutropenia. The dose-limiting toxicity for concurrent chemoradiotherapy was esophagitis. 9 patients received consolidation chemotherapy, with neutropenia and anemia/thrombocytopenia grade 3 being the only toxicities. The overall response was 73%. Conclusion: Oral vinorelbine 50 mg/m(2) (days 1, 8, 15 over 4 weeks) in combination with cisplatin 20 mg/m2 (days 1-4) is the recommended dose in combination with radiotherapy (66 Gy) and will be used for concurrent chemoradiotherapy in a forthcoming phase III trial testing the efficacy of consolidation chemotherapy in patients not progressing after chemoradiotherapy

    Interpreting a 1 fb^-1 ATLAS Search in the Minimal Anomaly Mediated Supersymmetry Breaking Model

    Full text link
    Recent LHC data significantly extend the exclusion limits for supersymmetric particles, particularly in the jets plus missing transverse momentum channels. The most recent such data have so far been interpreted by the experiment in only two different supersymmetry breaking models: the constrained minimal supersymmetric standard model (CMSSM) and a simplified model with only squarks and gluinos and massless neutralinos. We compare kinematical distributions of supersymmetric signal events predicted by the CMSSM and anomaly mediated supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We obtain a lower limit of 900 GeV on squark and gluino masses at the 95% confidence level for the equal mass limit, tan(beta)=10 and mu>0.Comment: 18 pages, 11 figure

    The origin of the [C II] emission in the S140 PDRs - new insights from HIFI

    Get PDF
    Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special issue

    Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors

    Get PDF
    Chronic exposure to nicotine up-regulates high sensitivity nicotinic acetylcholine receptors (nAChRs) in the brain. This up-regulation partially underlies addiction and may also contribute to protection against Parkinson’s disease. nAChRs containing the α6 subunit (α6* nAChRs) are expressed in neurons in several brain regions, but comparatively little is known about the effect of chronic nicotine on these nAChRs. We report here that nicotine up-regulates α6* nAChRs in several mouse brain regions (substantia nigra pars compacta, ventral tegmental area, medial habenula, and superior colliculus) and in neuroblastoma 2a cells. We present evidence that a coat protein complex I (COPI)-mediated process mediates this up-regulation of α6* or α4* nAChRs but does not participate in basal trafficking. We show that α6β2β3 nAChR up-regulation is prevented by mutating a putative COPI-binding motif in the β3 subunit or by inhibiting COPI. Similarly, a COPI-dependent process is required for up-regulation of α4β2 nAChRs by chronic nicotine but not for basal trafficking. Mutation of the putative COPI-binding motif or inhibition of COPI also results in reduced normalized Förster resonance energy transfer between α6β2β3 nAChRs and εCOP subunits. The discovery that nicotine exploits a COPI-dependent process to chaperone high sensitivity nAChRs is novel and suggests that this may be a common mechanism in the up-regulation of nAChRs in response to chronic nicotine

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
    corecore