5,293 research outputs found

    HI and CO in the circumstellar environment of the oxygen-rich AGB star RX Lep

    Full text link
    Circumstellar shells around AGB stars are built over long periods of time that may reach several million years. They may therefore be extended over large sizes (~1 pc, possibly more), and different complementary tracers are needed to describe their global properties. In the present work, we combined 21-cm HI and CO rotational line data obtained on an oxygen-rich semi-regular variable, RX Lep, to describe the global properties of its circumstellar environment. With the SEST, we detected the CO(2-1) rotational line from RX Lep. The line profile is parabolic and implies an expansion velocity of ~4.2 km/s and a mass-loss rate ~1.7 10^-7 Msun/yr (d = 137 pc). The HI line at 21 cm was detected with the Nancay Radiotelescope on the star position and at several offset positions. The linear shell size is relatively small, ~0.1 pc, but we detect a trail extending southward to ~0.5 pc. The line profiles are approximately Gaussian with an FWHM ~3.8 km/s and interpreted with a model developed for the detached shell around the carbon-rich AGB star Y CVn. Our HI spectra are well-reproduced by assuming a constant outflow (Mloss = 1.65 10^-7 Msun/yr) of ~4 10^4 years duration, which has been slowed down by the external medium. The spatial offset of the HI source is consistent with the northward direction of the proper motion, lending support to the presence of a trail resulting from the motion of the source through the ISM, as already suggested for Mira, RS Cnc, and other sources detected in HI. The source was also observed in SiO (3 mm) and OH (18 cm), but not detected. The properties of the external parts of circumstellar shells around AGB stars should be dominated by the interaction between stellar outflows and external matter for oxygen-rich, as well as for carbon-rich, sources, and the 21-cm HI line provides a very useful tracer of these regions.Comment: 15 pages, 9 figures, accepted for publication in A&

    Learning Online Smooth Predictors for Realtime Camera Planning using Recurrent Decision Trees

    Get PDF
    We study the problem of online prediction for realtime camera planning, where the goal is to predict smooth trajectories that correctly track and frame objects of interest (e.g., players in a basketball game). The conventional approach for training predictors does not directly consider temporal consistency, and often produces undesirable jitter. Although post-hoc smoothing (e.g., via a Kalman filter) can mitigate this issue to some degree, it is not ideal due to overly stringent modeling assumptions (e.g., Gaussian noise). We propose a recurrent decision tree framework that can directly incorporate temporal consistency into a data-driven predictor, as well as a learning algorithm that can efficiently learn such temporally smooth models. Our approach does not require any post-processing, making online smooth predictions much easier to generate when the noise model is unknown. We apply our approach to sports broadcasting: given noisy player detections, we learn where the camera should look based on human demonstrations. Our experiments exhibit significant improvements over conventional baselines and showcase the practicality of our approach

    High angular resolution N-band observation of the silicate carbon star IRAS08002-3803 with the VLTI/MIDI instrument

    Full text link
    We present the results of N-band spectro-interferometric observations of the silicate carbon star IRAS08002-3803 with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO). The observations were carried out using two unit telescopes (UT2 and UT3) with projected baseline lengths ranging from 39 to 47 m. Our observations of IRAS08002-3803 have spatially resolved the dusty environment of a silicate carbon star for the first time and revealed an unexpected wavelength dependence of the angular size in the N band: the uniform-disk diameter is found to be constant and ~36 mas (72 Rstar) between 8 and 10 micron, while it steeply increases longward of 10 micron to reach ~53 mas (106 Rstar) at 13 micron. Model calculations with our Monte Carlo radiative transfer code show that neither spherical shell models nor axisymmetric disk models consisting of silicate grains alone can simultaneously explain the observed wavelength dependence of the visibility and the spectral energy distribution (SED). We propose that the circumstellar environment of IRAS08002-3803 may consist of two grain species coexisting in the disk: silicate and a second grain species, for which we consider amorphous carbon, large silicate grains, and metallic iron grains. Comparison of the observed visibilities and SED with our models shows that such disk models can fairly -- though not entirely satisfactorily -- reproduce the observed SED and N-band visibilities. Our MIDI observations and the radiative transfer calculations lend support to the picture where oxygen-rich material around IRAS08002-3803 is stored in a circumbinary disk surrounding the carbon-rich primary star and its putative low-luminosity companion.Comment: 15 pages, 8 figures, accepted for publication in A&

    The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae and the impact on the ISM evolution

    Get PDF
    ‘The definitive version is available at: www3.interscience.wiley.com '. Copyright Blackwell / Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.14743.xWe report on an analysis of the gas and dust budget in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). Recent observations from the Spitzer Space Telescope enable us to study the mid-infrared dust excess of asymptotic giant branch (AGB) stars in the LMC. This is the first time we can quantitatively assess the gas and dust input from AGB stars over a complete galaxy, fully based on observations. The integrated mass-loss rate over all intermediate and high mass-loss rate carbon-rich AGB candidates in the LMC is 8.5 × 10−3 M⊙ yr−1 , up to 2.1 × 10−2 M⊙ yr−1 . This number could be increased up to 2.7 × 10−2 M⊙ yr−1 if oxygen-rich stars are included. This is overall consistent with theoretical expectations, considering the star formation rate (SFR) when these low- and intermediate-mass stars where formed, and the initial mass functions. AGB stars are one of the most important gas sources in the LMC, with supernovae (SNe), which produces about 2–4 × 10−2 M⊙ yr−1 . At the moment, the SFR exceeds the gas feedback from AGB stars and SNe in the LMC, and the current star formation depends on gas already present in the ISM. This suggests that as the gas in the ISM is exhausted, the SFR will eventually decline in the LMC, unless gas is supplied externally. Our estimates suggest 'a missing dust-mass problem' in the LMC, which is similarly found in high-z galaxies: the accumulated dust mass from AGB stars and possibly SNe over the dust lifetime (400–800 Myr) is significant less than the dust mass in the ISM. Another dust source is required, possibly related to star-forming regions.Peer reviewe

    Agricultural Turns, Geographical Turns: Retrospect and Prospect.

    Get PDF
    It is accepted that British rural geography has actively engaged with the ‘cultural turn’, leading to a resurgence of research within the sub-discipline. However, a reading of recent reviews suggests that the cultural turn has largely, if not completely, bypassed those geographers interested in the agricultural sector. Farming centred engagements with notions of culture have been relatively limited compared with those concerned with the non-agricultural aspects of rural space. Indeed, agricultural geography represents something of an awkward case in the context of the disciplinary turn to culture, a situation that demands further exposition. In seeking explanation, it becomes evident that research on the farm sector is more culturally informed than initially appears. This paper argues that there have been both interesting and important engagements between agricultural geography and cultural perspectives over the past decade. The paper elaborates four specific areas of research which provide evidence for concern about the ‘culture’ within agriculture. The future contribution that culturally informed perspectives in geographical research can bring to agricultural issues is outlined by way of conclusion

    Performance Bottlenecks in Digital Movie Systems

    Get PDF
    Digital movie systems offer great perspectives for multimedia applications. But the large amounts of data involved and the demand for isochronous transmission and playback are also great challenges for the designers of a new generation of file systems, database systems, operating systems, window systems, video encoder/decoder and networks. Today's research prototypes of digital movie systems suffer from severe performance bottlenecks, resulting in small movie windows, low frame rates or bad image quality (or all of these!). We consider the performance problem to be the most important problem with digital movie systems, preventing their widespread use today. In this paper we address performance issues of digital movie systems from a practical perspective. We report on performance experience gained with the XMovie system and new algorithms and protocols to overcome some of these bottlenecks

    The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating

    Get PDF
    Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed

    A Galactic Bar to Beyond the Solar Circle and its Relevance for Microlensing

    Get PDF
    The Galactic kinematics of Mira variables have been studied using infrared photometry, radial velocities, and Hipparcos parallaxes and proper motions. For Miras in the period range 145 to 200 days (probably corresponding to [Fe/H] in the range -0.8 to -1.3) the major axes of the stellar orbits are concentrated in the first quadrant of Galactic longitude. This is interpreted as a continuation of the bar-like structure of the Galactic Bulge out to the solar circle and beyond.Comment: 6 pages, 2 figures. To be published in: Microlensing 2000. ASP Conference Series, Eds. J W Menzies, P Sacket
    corecore