4,436 research outputs found
The mechanism by which potassium causes neurite retraction in lamprey descending neurons in cell culture
Abstract only availableSevere spinal cord injury (SCI) disrupts descending axons from reticulospinal (RS) neurons that project to the spinal cord. In most “higher” vertebrates, including humans, recovery is very minimal due to limited regeneration in the central nervous system, and paralysis is usually permanent below the injury site. In several lower vertebrates, including the lamprey, behavioral recovery is almost complete following SCI due to robust axonal regeneration. To study the cellular and molecular mechanisms that regulate axonal regeneration, neurons are often isolated in cell culture so that the factors that influence neurite outgrowth can be studied under controlled conditions. In our laboratory, we have developed a cell culture system in which neurite outgrowth of RS neurons can be studied (Hong et al., 2002; Ryan et al., 2004). Application of glutamate, an excitatory neurotransmitter, to the growth cones of RS neurons results in neurite retraction, presumably because of depolarization, calcium influx, and an increase in intracellular calcium. Intracellular calcium is thought to be one of the important regulators of the rate and direction of neurite outgrowth. Calcium influx could result from at least two different channels: chemically-gated channels (e.g. NMDA channels); or voltage-gated calcium channels. The purpose of the present study was to determine if calcium influx via voltage-gated calcium channels is sufficient to elicit neurite retraction. First, focal application of a 31 M potassium to growth cones of DiI-labeled RS neurons in culture to open voltage-gated calcium channels significantly reduced neurite growth rates, including neurite retraction, compared to pre-control periods. Second, 2 of Co++ or 300 M Cd++, which block calcium channels, abolished potassium-induced neurite retraction. In conclusion, the results suggest that calcium influx via voltage-gated calcium channels is sufficient to cause neurite retraction. Other experiments will determine if influx through voltage-gated channels is necessary for glutamate to elicit neurite outgrowth. Determination of the factors that regulate neurite outgrowth may provide information about the mechanism by which RS neurons regenerate their axons following spinal cord injury and restore locomotor function.Life Sciences Undergraduate Research Opportunity Progra
Drift-induced deceleration of Solar Energetic Particles
We investigate the deceleration of Solar Energetic Particles (SEPs) during their propagation from the Sun through interplanetary space, in the presence of weak to strong scattering in a Parker spiral configuration, using relativistic full orbit test particle simulations. The calculations retain all three spatial variables describing particles’ trajectories, allowing to model any transport across the magnetic field. Large energy change is shown to occur for protons, due to the combined effect of standard adiabatic deceleration and a significant contribution from particle drift in the direction opposite to that of the solar wind electric field. The latter drift-induced deceleration is found to have a stronger effect for SEP energies than for galactic cosmic rays. The kinetic energy of protons injected at 1 MeV is found to be reduced by between 35 and 90% after four days, and for protons injected at 100 MeV by between 20 and 55%. The overall degree of deceleration is a weak function of the scattering mean free path, showing that, although adiabatic deceleration plays a role, a large contribution is due to particle drift. Current SEP transport models are found to account for drift-induced deceleration in an approximate way and their accuracy will need to be assessed in future work
Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders
Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations
Exploiting spatial sparsity for multi-wavelength imaging in optical interferometry
Optical interferometers provide multiple wavelength measurements. In order to
fully exploit the spectral and spatial resolution of these instruments, new
algorithms for image reconstruction have to be developed. Early attempts to
deal with multi-chromatic interferometric data have consisted in recovering a
gray image of the object or independent monochromatic images in some spectral
bandwidths. The main challenge is now to recover the full 3-D (spatio-spectral)
brightness distribution of the astronomical target given all the available
data. We describe a new approach to implement multi-wavelength image
reconstruction in the case where the observed scene is a collection of
point-like sources. We show the gain in image quality (both spatially and
spectrally) achieved by globally taking into account all the data instead of
dealing with independent spectral slices. This is achieved thanks to a
regularization which favors spatial sparsity and spectral grouping of the
sources. Since the objective function is not differentiable, we had to develop
a specialized optimization algorithm which also accounts for non-negativity of
the brightness distribution.Comment: This version has been accepted for publication in J. Opt. Soc. Am.
Solar energetic particle access to distant longitudes through turbulent field-line meandering
Context. Current solar energetic particle (SEP) propagation models describe the effects of interplanetary plasma turbulence on SEPs as diffusion, using a Fokker-Planck (FP) equation. However, FP models cannot explain the observed fast access of SEPs across the average magnetic field to regions that are widely separated in longitude within the heliosphere without using unrealistically strong cross-field diffusion.
Aims. We study whether the recently suggested early non-diffusive phase of SEP propagation can explain the wide SEP events with realistic particle transport parameters.
Methods. We used a novel model that accounts for the SEP propagation along field lines that meander as a result of plasma turbulence. Such a non-diffusive propagation mode has been shown to dominate the SEP cross-field propagation early in the SEP event history. We compare the new model to the traditional approach, and to SEP observations.
Results. Using the new model, we reproduce the observed longitudinal extent of SEP peak fluxes that are characterised by a Gaussian profile with σ = 30 − 50◦ , while current diffusion theory can only explain extents of 11◦ with realistic diffusion coefficients. Our model also reproduces the timing of SEP arrival at distant longitudes, which cannot be explained using the diffusion model.
Conclusions. The early onset of SEPs over a wide range of longitudes can be understood as a result of the effects of magnetic fieldline random walk in the interplanetary medium and requires an SEP transport model that properly describes the non-diffusive early phase of SEP cross-field propagation
Bostonia: The Boston University Alumni Magazine. Volume 9
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Family coordination in families who have a child with autism spectrum disorder
Little is known about the interactions of families where there is a child with autism spectrum disorder (ASD). The present study applies the Lausanne Trilogue Play (LTP) to explore both its applicability to this population as well as to assess resources and areas of deficit in these families. The sample consisted of 68 families with a child with ASD, and 43 families with a typically developing (TD) child. With respect to the global score for family coordination there were several negative correlations: the more severe the symptoms (based on the child’s ADOS score), the more family coordination was dysfunctional. This correlation was particularly high when parents had to play together with the child. In the parts in which only one of the parents played actively with the child, while the other was simply present, some families did achieve scores in the functional range, despite the child’s symptom severity. The outcomes are discussed in terms of their clinical implications both for assessment and for interventio
The likely effects of thermal climate change on vertebrate skeletal muscle mechanics with possible consequences for animal movement and behaviour
Reproduction and respiration of a climate change indicator species: effect of temperature and variable food in the copepod Centropages chierchiae
The abundance of the calanoid copepod Centropages chierchiae has increased at the northern limits of its distribution in recent decades, mainly due to oceanic climate forcing, suggesting this as a key species in monitoring climate change. Laboratory experiments were conducted to study the combined effect of temperature, food type and concentration on the egg production rate (EPR) and hatching success (HS) of C. chierchiae. Females were fed on two monoalgal diets (Gymnodinium sp. and Phaeodactylum tricornutum) at two food concentrations and at three different temperatures (13, 19, 24C). Respiration rates of both genders were measured at four different temperatures (8, 13, 19, 24C). EPR was significantly different between temperatures and food concentrations, the maximum EPR being attained when the copepods were exposed to high food levels and at 19C. Prey type significantly influenced EPR; feeding on P. tricornutum resulted in higher egg production than Gymnodinium sp. HS was significantly lower at 13C than at 19 and 24C and higher with Gymnodinium sp. Respiration rates were sex independent and increased exponentially with temperature. To maintain basal metabolism, the minimum food intake of P. tricornutum ranged between 0.4 and 1.8 g C and for Gymnodinium sp. between 0.03 and 0.13 g C. Food intake was always higher than the metabolic demands, except for the highest temperature tested (24C). The present results confirm the sensitivity of C. chierchiae to temperature variations and may help in understanding the successful expansion of its distribution towards northern latitudes.Portuguese Science and Technology Foundation (FCT) [PTDC/MAR/098643/2008, PTDC/MAR/111304/2009, PTDC/MAR/0908066/2008]; FCT [SFRH/BD/28198/2006]; [SFRH/BPD/38332/2007
- …
