31,091 research outputs found
The linear instability of the stratified plane Couette flow
We present the stability analysis of a plane Couette flow which is stably
stratified in the vertical direction orthogonally to the horizontal shear.
Interest in such a flow comes from geophysical and astrophysical applications
where background shear and vertical stable stratification commonly coexist. We
perform the linear stability analysis of the flow in a domain which is periodic
in the stream-wise and vertical directions and confined in the cross-stream
direction. The stability diagram is constructed as a function of the Reynolds
number Re and the Froude number Fr, which compares the importance of shear and
stratification. We find that the flow becomes unstable when shear and
stratification are of the same order (i.e. Fr 1) and above a moderate
value of the Reynolds number Re700. The instability results from a
resonance mechanism already known in the context of channel flows, for instance
the unstratified plane Couette flow in the shallow water approximation. The
result is confirmed by fully non linear direct numerical simulations and to the
best of our knowledge, constitutes the first evidence of linear instability in
a vertically stratified plane Couette flow. We also report the study of a
laboratory flow generated by a transparent belt entrained by two vertical
cylinders and immersed in a tank filled with salty water linearly stratified in
density. We observe the emergence of a robust spatio-temporal pattern close to
the threshold values of F r and Re indicated by linear analysis, and explore
the accessible part of the stability diagram. With the support of numerical
simulations we conclude that the observed pattern is a signature of the same
instability predicted by the linear theory, although slightly modified due to
streamwise confinement
Spontaneous generation of inertial waves from boundary turbulence in a librating sphere
In this work, we report the excitation of inertial waves in a librating
sphere even for libration frequencies where these waves are not directly
forced. This spontaneous generation comes from the localized turbulence induced
by the centrifugal instabilities in the Ekman boundary layer near the equator
and does not depend on the libration frequency. We characterize the key
features of these inertial waves in analogy with previous studies of the
generation of internal waves in stratified flows from localized turbulent
patterns. In particular, the temporal spectrum exhibits preferred values of
excited frequency. This first-order phenomenon is generic to any rotating flow
in the presence of localized turbulence and is fully relevant for planetary
applications
Image metadata estimation using independent component analysis and regression
In this paper, we describe an approach to camera metadata estimation using regression based on Independent Component Analysis (ICA). Semantic scene classification of images using camera metadata related to capture conditions has had some success in the past. However, different makes and models of camera capture different types of metadata and this severely hampers the application of this kind of approach in real systems that consist of photos captured by many different users. We propose to address this issue by using regression to predict the missing metadata from observed data, thereby providing more complete (and hence more useful) metadata for the entire image corpus. The proposed approach uses an ICA based approach to regression
Elliptical instability in hot Jupiter systems
Several studies have already considered the influence of tides on the
evolution of systems composed of a star and a close-in companion to tentatively
explain different observations such as the spin-up of some stars with hot
Jupiters, the radius anomaly of short orbital period planets and the
synchronization or quasi-synchronization of the stellar spin in some extreme
cases. However, the nature of the mechanism responsible for the tidal
dissipation in such systems remains uncertain. In this paper, we claim that the
so-called elliptical instability may play a major role in these systems,
explaining some systematic features present in the observations. This
hydrodynamic instability, arising in rotating flows with elliptical
streamlines, is suspected to be present in both planet and star of such
systems, which are elliptically deformed by tides. The presence and the
influence of the elliptical instability in gaseous bodies, such as stars or hot
Jupiters, are most of the time neglected. In this paper, using numerical
simulations and theoretical arguments, we consider several features associated
to the elliptical instability in hot-Jupiter systems. In particular, the use of
ad hoc boundary conditions makes it possible to estimate the amplitude of the
elliptical instability in gaseous bodies. We also consider the influence of
compressibility on the elliptical instability, and compare the results to the
incompressible case. We demonstrate the ability for the elliptical instability
to grow in the presence of differential rotation, with a possible synchronized
latitude, provided that the tidal deformation and/or the rotation rate of the
fluid are large enough. Moreover, the amplitude of the instability for a
centrally-condensed mass of fluid is of the same order of magnitude as for an
incompressible fluid for a given distance to the threshold of the instability.
Finally, we show that the assumption of the elliptical instability being the
main tidal dissipation process in eccentric inflated hot Jupiters and
misaligned stars is consistent with current data.Comment: Icarus (2013) http://dx.doi.org/10.1016/j.icarus.2012.12.01
Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves
We demonstrate via direct numerical simulations that a periodic, oscillating
mean flow spontaneously develops from turbulently generated internal waves. We
consider a minimal physical model where the fluid self-organizes in a
convective layer adjacent to a stably stratified one. Internal waves are
excited by turbulent convective motions, then nonlinearly interact to produce a
mean flow reversing on timescales much longer than the waves' period. Our
results demonstrate for the first time that the three-scale dynamics due to
convection, waves, and mean flow is generic and hence can occur in many
astrophysical and geophysical fluids. We discuss efforts to reproduce the mean
flow in reduced models, where the turbulence is bypassed. We demonstrate that
wave intermittency, resulting from the chaotic nature of convection, plays a
key role in the mean-flow dynamics, which thus cannot be captured using only
second-order statistics of the turbulent motions
Neuronal avalanches differ from wakefulness to deep sleep - evidence from intracranial depth recordings in humans
Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical (SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal avalanches – spatiotemporal waves of enhanced activity - from dense intracranial depth recordings in humans. We showed that avalanche distributions closely follow a power law – the hallmark feature of SOC - for each vigilance state. However, avalanches clearly differ with vigilance states: slow wave sleep (SWS) shows large avalanches, wakefulness intermediate, and rapid eye movement (REM) sleep small ones. Our SOC model, together with the data, suggested first that the differences are mediated by global but tiny changes in synaptic strength, and second, that the changes with vigilance states reflect small deviations from criticality to the subcritical regime, implying that the human brain does not operate at criticality proper but close to SOC. Independent of criticality, the analysis confirms that SWS shows increased correlations between cortical areas, and reveals that REM sleep shows more fragmented cortical dynamics
- …
