2,681 research outputs found
Are soils in urban ecosystems compacted? A citywide analysis
Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision
Asteroids in the Inner Solar System II - Observable Properties
This paper presents synthetic observations of long-lived, coorbiting
asteroids of Mercury, Venus, the Earth and Mars. Our sample is constructed by
taking the limiting semimajor axes, differential longitudes and inclinations
for long-lived stability provided by simulations. The intervals are randomly
populated with values to create initial conditions. These orbits are
re-simulated to check that they are stable and then re-sampled every 2.5 years
for 1 million years. The Mercurian sample contains only horseshoe orbits, the
Martian sample only tadpoles. For both Venus and the Earth, the greatest
concentration of objects on the sky occurs close to the classical Lagrange
points at heliocentric ecliptic longitudes of 60 and 300 degrees. The
distributions are broad especially if horseshoes are present in the sample. The
full-width half maximum (FWHM) in heliocentric longitude for Venus is 325
degrees and for the Earth is 328 degrees. The mean and most common velocity of
these coorbiting satellites coincides with the mean motion of the parent
planet, but again the spread is wide with a FWHM for Venus of 27.8 arcsec/hr
and for the Earth of 21.0 arcsec/hr. For Mars, the greatest concentration on
the sky occurs at heliocentric ecliptic latitudes of 12 degrees. The peak of
the velocity distribution occurs at 65 arcsec/hr, significantly less than the
Martian mean motion, while its FWHM is 32.3 arcsec/hr. The case of Mercury is
the hardest of all, as the greatest concentration occurs at heliocentric
longitudes close to the Sun.Comment: 16 pages, 11 figures, Monthly Notices (in press). Higher quality
figures available at
http://www-thphys.physics.ox.ac.uk/users/WynEvans/home.htm
Evolution of the interfacial structure of LaAlO3 on SrTiO3
The evolution of the atomic structure of LaAlO3 grown on SrTiO3 was
investigated using surface x-ray diffraction in conjunction with
model-independent, phase-retrieval algorithms between two and five monolayers
film thickness. A depolarizing buckling is observed between cation and oxygen
positions in response to the electric field of polar LaAlO3, which decreases
with increasing film thickness. We explain this in terms of competition between
elastic strain energy, electrostatic energy, and electronic reconstructions.
The findings are qualitatively reproduced by density-functional theory
calculations. Significant cationic intermixing across the interface extends
approximately three monolayers for all film thicknesses. The interfaces of
films thinner than four monolayers therefore extend to the surface, which might
affect conductivity
Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli
Biotechnology and Biological Sciences Research Council. Grant Number: BB/E009571, Oxford Centre for Integrative Systems Biology (OCISB), Engineering and Physical Science Research Council, Royal Society, Hertford College Oxfor
Spontaneous Discharge Patterns in Cochlear Spiral Ganglion Cells Prior to the Onset of Hearing in Cats
Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2 ), yet individual auditory neurons do not respond to ambient sound levels below 90–100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3 to P9. The spiral ganglion was accessed via the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in 9 animals. Spike rates in neonates were very low, ranging from 0.06 to 56 sp/s with a mean of 3.09 +/- 8.24 sp/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval coefficient of variation (CVi = 2.9 +/-1.6) and burst index of 5.2 +/- 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision (Shatz, 1996, Proc Natl Acad Sci 93). Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during pre-hearing periods. Originally published in Journal of Neurophysiology Vol. 98, No. 4 200
Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes
Field studies indicate an intensification of mineral weathering with advancement from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal (EM) fungal partners of gymnosperm and angiosperm trees. We test the hypothesis that this intensification is driven by increasing photosynthate carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer experiments with representative tree–fungus mycorrhizal partnerships. Trees were grown in either a simulated past CO2 atmosphere (1500 ppm)—under which EM fungi evolved—or near-current CO2 (450 ppm). We report a direct linkage between photosynthate-energy fluxes from trees to EM and AM mycorrhizal mycelium and rates of calcium silicate weathering. Calcium dissolution rates halved for both AM and EM trees as CO2 fell from 1500 to 450 ppm, but silicate weathering by AM trees at high CO2 approached rates for EM trees at near-current CO2. Our findings provide mechanistic insights into the involvement of EM-associating forest trees in strengthening biological feedbacks on the geochemical carbon cycle that regulate atmospheric CO2 over millions of years
The beginnings of geography teaching and research in the University of Glasgow: the impact of J.W. Gregory
J.W. Gregory arrived in Glasgow from Melbourne in 1904 to take up the post of foundation Professor of Geology in the University of Glasgow. Soon after his arrival in Glasgow he began to push for the setting up of teaching in Geography in Glasgow, which came to pass in 1909 with the appointment of a Lecturer in Geography. This lecturer was based in the Department of Geology in the University's East Quad. Gregory's active promotion of Geography in the University was matched by his extensive writing in the area, in textbooks, journal articles and popular books. His prodigious output across a wide range of subject areas is variably accepted today, with much of his geomorphological work being judged as misguided to varying degrees. His 'social science' publications - in the areas of race, migration, colonisation and economic development of Africa and Australia - espouse a viewpoint that is unacceptable in the twenty-first century. Nonetheless, that viewpoint sits squarely within the social and economic traditions of Gregory's era, and he was clearly a key 'Establishment' figure in natural and social sciences research in the first half of the twentieth century. The establishment of Geography in the University of Glasgow remains enduring testimony of J.W. Gregory's energy, dedication and foresight
- …
