5,982 research outputs found
Quay voices in Glasgow museums : an oral history of Glasgow dock workers
Notes on oral history project commissioned by Glasgow museums about Glasgow dock workers
Summary of the Very Large Hadron Collider Physics and Detector Workshop
One of the options for an accelerator beyond the LHC is a hadron collider
with higher energy. Work is going on to explore accelerator technologies that
would make such a machine feasible. This workshop concentrated on the physics
and detector issues associated with a hadron collider with an energy in the
center of mass of the order of 100 to 200 TeV
Insulin + nutrition control for tight critical care glycaemic regulation
A new insulin and nutrition control method for tight glycaemic control in
critical care is presented from concept to clinical trials to clinical practice change. The
primary results show that the method can provide very tight glycaemic control in critical
care for a very critically ill cohort. More specifically, the final clinical practice change
protocol provided 2100 hours of control with average blood glucose of 5.8 +/- 0.9
mmol/L for an initial 10 patient pilot study. It also used less insulin, while providing the
same or greater nutritional input, as compared to retrospective hospital control for a
relatively very critically ill cohort with high insulin resistance
Prospects for Searching for Excited Leptons during RunII of the Fermilab Tevatron
This letter presents a study of prospects of searching for excited leptons
during RunII of the Fermilab Tevatron. We concentrate on single and pair
production of excited electrons in the photonic decay channel in one CDF/DO
detector equivalent for 2 fb^{-1}. By the end of RunIIa, the limits should be
easily extended beyond those set by LEP and HERA for excited leptons with mass
above about 190 GeV.Comment: 4 pages, 8 figure
Constraints on the pMSSM from searches for squarks and gluinos by ATLAS
We study the impact of the jets and missing transverse momentum SUSY analyses
of the ATLAS experiment on the phenomenological MSSM (pMSSM). We investigate
sets of SUSY models with a flat and logarithmic prior in the SUSY mass scale
and a mass range up to 1 and 3 TeV, respectively. These models were found
previously in the study 'Supersymmetry without Prejudice'. Removing models with
long-lived SUSY particles, we show that 99% of 20000 randomly generated pMSSM
model points with a flat prior and 87% for a logarithmic prior are excluded by
the ATLAS results. For models with squarks and gluinos below 600 GeV all models
of the pMSSM grid are excluded. We identify SUSY spectra where the current
ATLAS search strategy is less sensitive and propose extensions to the inclusive
jets search channel
ASCR/HEP Exascale Requirements Review Report
This draft report summarizes and details the findings, results, and
recommendations derived from the ASCR/HEP Exascale Requirements Review meeting
held in June, 2015. The main conclusions are as follows. 1) Larger, more
capable computing and data facilities are needed to support HEP science goals
in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of
the demand at the 2025 timescale is at least two orders of magnitude -- and in
some cases greater -- than that available currently. 2) The growth rate of data
produced by simulations is overwhelming the current ability, of both facilities
and researchers, to store and analyze it. Additional resources and new
techniques for data analysis are urgently needed. 3) Data rates and volumes
from HEP experimental facilities are also straining the ability to store and
analyze large and complex data volumes. Appropriately configured
leadership-class facilities can play a transformational role in enabling
scientific discovery from these datasets. 4) A close integration of HPC
simulation and data analysis will aid greatly in interpreting results from HEP
experiments. Such an integration will minimize data movement and facilitate
interdependent workflows. 5) Long-range planning between HEP and ASCR will be
required to meet HEP's research needs. To best use ASCR HPC resources the
experimental HEP program needs a) an established long-term plan for access to
ASCR computational and data resources, b) an ability to map workflows onto HPC
resources, c) the ability for ASCR facilities to accommodate workflows run by
collaborations that can have thousands of individual members, d) to transition
codes to the next-generation HPC platforms that will be available at ASCR
facilities, e) to build up and train a workforce capable of developing and
using simulations and analysis to support HEP scientific research on
next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
Stealth nanoparticles coated with heparin as peptide or protein carriers.
International audienceNanoparticles (prepared from a mixture of polyester and a polycationic polymer) loaded with insulin were prepared by a double emulsion method followed by evaporation solvent. Low molecular weight heparin (LMWH) was bound by electrostatic interactions onto the surface of the particles to confer Stealth properties. These nanoparticles were characterized in vitro (mean diameter, zeta potential, encapsulation efficiency, and release kinetics) and compared with conventional (without LMWH) and unloaded nanoparticles. The pharmacokinetics of insulin were studied after intravenous injection into diabetic rats in the form of Stealth or conventional nanoparticles or as a solution. Stealth nanoparticles allowed an increase in the elimination half-life of insulin, showing that the hydrophilic layer of LMWH was able to limit recognition by the mononuclear phagocytosis system in vivo. However, complement activation studies (CH50) did not reveal significant difference between Stealth and conventional nanoparticles
A Stealth Supersymmetry Sampler
The LHC has strongly constrained models of supersymmetry with traditional
missing energy signatures. We present a variety of models that realize the
concept of Stealth Supersymmetry, i.e. models with R-parity in which one or
more nearly-supersymmetric particles (a "stealth sector") lead to collider
signatures with only a small amount of missing energy. The simplest realization
involves low-scale supersymmetry breaking, with an R-odd particle decaying to
its superpartner and a soft gravitino. We clarify the stealth mechanism and its
differences from compressed supersymmetry and explain the requirements for
stealth models with high-scale supersymmetry breaking, in which the soft
invisible particle is not a gravitino. We also discuss new and distinctive
classes of stealth models that couple through a baryon portal or Z' gauge
interactions. Finally, we present updated limits on stealth supersymmetry in
light of current LHC searches.Comment: 45 pages, 16 figure
Recombinant human activated protein C improves endotoxemia-induced endothelial dysfunction: a blood-free model in isolated mouse arteries
Recombinant human activated protein C (rhAPC) is one of the treatment panels for improving vascular dysfunction in septic patients. In a previous study, we reported that rhAPC treatment in rat endotoxemia improved vascular reactivity, although the mechanisms involved are still under debate. In the present study, we hypothesized that rhAPC may improve arterial dysfunction through its nonanticoagulant properties. Ten hours after injection of LPS in mice (50 mg/kg ip), aortic rings and mesenteric arteries were isolated and incubated with or without rhAPC for 12 h. Aortic rings were mounted in a myograph, after which arterial contractility and endothelium-dependent relaxation were measured in the presence or absence of nitric oxide synthase or cyclooxygenase inhibitors. Flow (shear stress)-mediated dilation with or without the above inhibitors was also measured in mesenteric resistance arteries. Protein expression was assessed by Western blotting. Lipopolysaccharide (LPS) reduced aortic contractility to KCl and phenylephrine as well as dilation to acetylcholine. LPS also reduced flow-mediated dilation in mesenteric arteries. In rhAPC-treated aorta and mesenteric arteries, contractility and endothelial responsiveness to vasodilator drug and shear stress were improved. rhAPC treatment also improved LPS-induced endothelial dysfunction; this effect was associated with an increase in the phosphorylated form of endothelial nitric oxide synthase and protein kinase B as well as cyclooxygenase vasodilatory pathways, thus suggesting that these pathways, together with the decrease in nuclear factor-κB activation and inducible nitric oxide synthase expression in the vascular wall, are implicated in the endothelial effect of rhAPC. In conclusion, ex vivo application of rhAPC improves arterial contractility and endothelial dysfunction resulting from endotoxemia in mice. This finding provides important insights into the mechanism underlying rhAPC-induced improvements on arterial dysfunction during septic shock
- …
