8,431 research outputs found
Complete S-matrix in a microwave cavity at room temperature
We experimentally study the widths of resonances in a two-dimensional
microwave cavity at room temperature. By developing a model for the coupling
antennas, we are able to discriminate their contribution from those of ohmic
losses to the broadening of resonances. Concerning ohmic losses, we
experimentally put to evidence two mechanisms: damping along propagation and
absorption at the contour, the latter being responsible for variations of
widths from mode to mode due to its dependence on the spatial distribution of
the field at the contour. A theory, based on an S-matrix formalism, is given
for these variations. It is successfully validated through measurements of
several hundreds of resonances in a rectangular cavity.Comment: submitted to PR
Deep Hubble Space Telescope/ACS Observations of I Zw 18: a Young Galaxy in Formation
We present V and I photometry of the resolved stars in the most
metal-deficient blue compact dwarf galaxy known, I Zw 18 (Zsun/50), using
Hubble Space Telescope/Advanced Camera for Surveys (ACS) images, the deepest
ones ever obtained for this galaxy. The resulting I vs. V-I color-magnitude
diagram (CMD) reaches limiting magnitudes V=I=29 mag. It reveals a young
stellar population of blue main-sequence (MS) stars (age <30 Myr) and blue and
red supergiants (10 Myr<age<100 Myr), but also an older evolved population of
asymptotic giant branch (AGB) stars (100 Myr<age<500 Myr). We derive a distance
to I Zw 18 in the range 12.6 Mpc - 15 Mpc from the brightness of its AGB stars,
with preferred values in the higher range. The red giant branch (RGB) stars are
conspicuous by their absence, although, for a distance of I Zw 18 <15 Mpc, our
imaging data go ~ 1-2 mag below the tip of the RGB. Thus, the most evolved
stars in the galaxy are not older than 500 Myr and I Zw 18 is a bona fide young
galaxy. Several star formation episodes can be inferred from the CMDs of the
main body and the C component. There have been respectively three and two
episodes in these two parts, separated by periods of ~ 100-200 Myr. In the main
body, the younger MS and massive post-MS stars are distributed over a larger
area than the older AGB stars, suggesting that I Zw 18 is still forming from
the inside out. In the C component, different star formation episodes are
spatially distinct, with stellar population ages decreasing from the northwest
to the southeast, also suggesting the ongoing build-up of a young galaxy.Comment: 29 pages, 13 Postscript figures, accepted for publication in the
Astrophysical Journa
A continuous low star formation rate in IZw 18 ?
Deep long-slit spectroscopic observations of the blue compact galaxy IZw 18
obtained with the CFH 3.6 m Telescope are presented. The very low value of
oxygen abundance previously reported is confirmed and a very homogeneous
abundance distribution is found (no variation larger than 0.05 dex) over the
whole ionized region. We concur with Tenorio-Tagle (1996) and Devost et al.
(1997) that the observed abundance level cannot result from the material
ejected by the stars formed in the current burst, and propose that the observed
metals were formed in a previous star formation episode. Metals ejected in the
current burst of star formation remain most probably hidden in a hot phase and
are undetectable using optical spectroscopy. We discuss different scenarios of
star formation in IZw 18. Combining various observational facts, for instance
the faint star formation rate observed in low surface brightness galaxies van
Zee et al. (1997), it is proposed that a low and continuous rate of star
formation occurring during quiescent phases between bursts could be a
significant source of metal enrichment of the interstellar medium.Comment: 10 pages, 4 Postscript figures, to be published in Astronomy and
Astrophysics main journa
Sulfate and MSA in the air and snow on the Greenland Ice Sheet
Sulfate and methanesulfonic acid (MSA) concentrations in aerosol, surface snow, and snowpit samples have been measured at two sites on the Greenland Ice Sheet. Seasonal variations of the concentrations observed for these chemical species in the atmosphere are reproduced in the surface snow and preserved in the snowpit sequence. The amplitude of the variations over a year are smaller in the snow than in the air, but the ratios of the concentrations are comparable. The seasonal variations for sulfate are different at the altitude of the Ice Sheet compared to those observed at sea level, with low concentrations in winter and short episodes of elevated concentrations in spring. In contrast, the variations in concentrations of MSA are similar to those measured at sea level, with a first sequence of elevated concentrations in spring and another one during summer, and a winter low resulting from low biogenic production. The ratio MSA/sulfate clearly indicates the influence of high-latitude sources for the summer maximum of MSA, but the large impact of anthropogenic sulfate precludes any conclusion for the spring maximum. The seasonal pattern observed for these species in a snowpit sampled according to stratigraphy indicates a deficit in the accumulation of winter snow at the summit of the Greenland Ice Sheet, in agreement with some direct observations. A deeper snowpit covering the years 1985–1992 indicates the consistency of the seasonal pattern for MSA over the years, which may be linked to transport and deposition processes
Die Bau- und Betriebskosten einer Kernenergie-antriebsanlage für Handelsschiffe im Vergleich zu denen herkömmlicher Handelsschiffe unter Voraussetzung gleicher Benutzung mit dem Ziel gleicher Wirtschaftlichkeit. EUR 586. = The construction and operating costs of a nuclear power plant drive for merchant ships compared to those of conventional merchant ships under the assumption of equal use with the goal of equal efficiency. EUR 586.
Statistics of the electromagnetic response of a chaotic reverberation chamber
This article presents a study of the electromagnetic response of a chaotic
reverberation chamber (RC) in the presence of losses. By means of simulations
and of experiments, the fluctuations in the maxima of the field obtained in a
conventional mode-stirred RC are compared with those in a chaotic RC in the
neighborhood of the Lowest Useable Frequency (LUF). The present work
illustrates that the universal spectral and spatial statistical properties of
chaotic RCs allow to meet more adequately the criteria required by the Standard
IEC 61000-4-21 to perform tests of electromagnetic compatibility.Comment: 6 pages, 9 figure
Flux Jumps Driven by a Pulsed Magnetic Field
The understanding of flux jumps in the high temperature superconductors is of
importance since the occurrence of these jumps may limit the perspectives of
the practical use of these materials. In this work we present the experimental
study of the role of heavy ion irradiation in stabilizing the HTSC against flux
jumps by comparing un-irradiated and 7.5 10^10 Kr-ion/cm2 irradiated
(YxTm1-x)Ba2Cu3O7 single crystals. Using pulsed field magnetization
measurements, we have applied a broad range of field sweep rates from 0.1T/s up
to 1800 T/s to investigate the behavior of the flux jumps. The observed flux
jumps, which may be attributed to thermal instabilities, are incomplete and
have different amplitudes. The flux jumps strongly depend on the magnetic
field, on the magneto-thermal history of the sample, on the magnetic field
sweep rate, on the critical current density jc, on the temperature and on the
thermal contact with the bath in which the sample is immersed.Comment: 5 pages, PDF-fil
- …
