2,094 research outputs found
Examining Pre-Service Teacher Candidates’ Sources and Levels of Knowledge about Autism Spectrum Disorders
This study was designed to identify what pre-service teacher candidates knew about autism spectrum disorder (ASD) and how they had acquired that knowledge in order to design more effective preparation courses. Teacher candidates (N=87) from three teacher preparation programs completed questionnaires during, or prior to, their first special education course. The findings indicate a relationship between sources of knowledge about ASD and actual levels of knowledge. Based on the findings, the authors argue that there is a need for coursework that focuses on effective intervention strategies and utilizes direct opportunities for teacher candidates to work with students with ASD
Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters
A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles
The 67 Hz Feature in the Black Hole Candidate GRS 1915+105 as a Possible ``Diskoseismic'' Mode
The Rossi X-ray Timing Explorer (RXTE) has made feasible for the first time
the search for high-frequency (~ 100 Hz) periodic features in black hole
candidate (BHC) systems. Such a feature, with a 67 Hz frequency, recently has
been discovered in the BHC GRS 1915+105 (Morgan, Remillard, & Greiner). This
feature is weak (rms variability ~0.3%-1.6%), stable in frequency (to within ~2
Hz) despite appreciable luminosity fluctuations, and narrow (quality factor Q ~
20). Several of these properties are what one expects for a ``diskoseismic''
g-mode in an accretion disk about a 10.6 M_sun (nonrotating) - 36.3 M_sun
(maximally rotating) black hole (if we are observing the fundamental mode
frequency). We explore this possibility by considering the expected luminosity
modulation, as well as possible excitation and growth mechanisms---including
turbulent excitation, damping, and ``negative'' radiation damping. We conclude
that a diskoseismic interpretation of the observations is viable.Comment: 4 Pages, Latex (emulateapj.sty included), to Appear in ApJ Letters,
Vol. 477, Final Version with Updated Reference
Measuring Broadband’s Economic Impact
Does broadband matter to the economy? Numerous studies have focused on whether there is a digital divide, on regulatory impacts and investment incentives, and on the factors influencing where broadband is available. However, given how recently broadband has been adopted, little empirical research has investigated its economic impact. This paper presents estimates of the effect of broadband on a number of indicators of economic activity, including employment, wages, and industry mix, using a cross-sectional panel data set of communities (by zip code) across the United States. We match data from the FCC (Form 477) on broadband availability with demographic and other economic data from the US Population Censuses and Establishment Surveys. We find support for the conclusion that broadband positively affects economic activity in ways that are consistent with the qualitative stories told by broadband advocates. Even after controlling for community-level factors known to influence broadband availability and economic activity, we find that between 1998 and 2002, communities in which mass-market broadband was available by December 1999 experienced more rapid growth in (1) employment, (2) the number of businesses overall, and (3) businesses in IT-intensive sectors. In addition, the effect of broadband availability by 1999 can be observed in higher market rates for rental housing in 2000. We compare state-level with zip-code level analyses to highlight data aggregation problems, and discuss a number of analytic and data issues that bear on further measurements of broadband’s economic impact. This analysis is perforce preliminary because additional data and experience are needed to more accurately address this important question; however, the early results presented here suggest that the assumed (and oft-touted) economic impacts of broadband are both real and measurable
Mesopore etching under supercritical conditions – A shortcut to hierarchically porous silica monoliths
Hierarchically porous silica monoliths are obtained in the two-step Nakanishi process, where formation of a macro microporous silica gel is followed by widening micropores to mesopores through surface etching. The latter step is carried out through hydrothermal treatment of the gel in alkaline solution and necessitates a lengthy solvent exchange of the aqueous pore fluid before the ripened gel can be dried and calcined into a mechanically stable macro mesoporous monolith. We show that using an ethanol water (95.6/4.4, v/v) azeotrope as supercritical fluid for mesopore etching eliminates the solvent exchange, ripening, and drying steps of the classic route and delivers silica monoliths that can withstand fast heating rates for calcination. The proposed shortcut decreases the overall preparation time from ca. one week to ca. one day. Porosity data show that the alkaline conditions for mesopore etching are crucial to obtain crack-free samples with a narrow mesopore size distribution. Physical reconstruction of selected samples by confocal laser scanning microscopy and subsequent morphological analysis confirms that monoliths prepared via the proposed shortcut possess the high homogeneity of silica skeleton and macropore space that is desirable in adsorbents for flow-through applications
Efficacy of an internet-based problem-solving training for teachers: results of a randomized controlled trial
Objective The primary purpose of this randomized controlled trial (RCT) was to evaluate the efficacy of internet-based problem-solving training (iPST) for employees in the educational sector (teachers) with depressive symptoms. The results of training were compared to those of a waitlist control group (WLC). Methods One-hundred and fifty teachers with elevated depressive symptoms (Center for Epidemiologic Studies Depression Scale, CES-D ≥16) were assigned to either the iPST or WLC group. The iPST consisted of five lessons, including problem-solving and rumination techniques. Symptoms were assessed before the intervention began and in follow-up assessments after seven weeks, three months, and six months. The primary outcome was depressive symptom severity (CES-D). Secondary outcomes included general and work-specific self-efficacy, perceived stress, pathological worries, burnout symptoms, general physical and mental health, and absenteeism. Results iPST participants displayed a significantly greater reduction in depressive symptoms after the intervention (d=0.59, 95% CI 0.26-0.92), after three months (d=0.37, 95% CI 0.05-0.70) and after six months (d=0.38, 95% CI 0.05-0.70) compared to the control group. The iPST participants also displayed significantly higher improvements in secondary outcomes. However, workplace absenteeism was not significantly affected. Conclusion iPST is effective in reducing symptoms of depression among teachers. Disseminated on a large scale, iPST could contribute to reducing the burden of stress-related mental health problems among teachers. Future studies should evaluate iPST approaches for use in other working populations
Relativistic Diskoseismology. I. Analytical Results for 'Gravity Modes'
We generalize previous calculations to a fully relativistic treatment of
adiabatic oscillations which are trapped in the inner regions of accretion
disks by non-Newtonian gravitational effects of a black hole. We employ the
Kerr geometry within the scalar potential formalism of Ipser and Lindblom,
neglecting the gravitational field of the disk. This approach treats
perturbations of arbitrary stationary, axisymmetric, perfect fluid models. It
is applied here to thin accretion disks. Approximate analytic eigenfunctions
and eigenfrequencies are obtained for the most robust and observable class of
modes, which corresponds roughly to the gravity (internal) oscillations of
stars. The dependence of the oscillation frequencies on the mass and angular
momentum of the black hole is exhibited. These trapped modes do not exist in
Newtonian gravity, and thus provide a signature and probe of the strong-field
structure of black holes. Our predictions are relevant to observations which
could detect modulation of the X-ray luminosity from stellar mass black holes
in our galaxy and the UV and optical luminosity from supermassive black holes
in active galactic nuclei.Comment: 31 pages, 6 figures, uses style file aaspp4.sty, prepared with the
AAS LATEX macros v4.0, significant revision of earlier submission to include
modes with axial index m>
National Geodetic Satellite Program, Part II: Smithsonian Astrophysical Observatory
A sequence of advances in the determination of geodetic parameters presented by the Smithsonian Astrophysical Observatory are described. A Baker-Nunn photographic system was used in addition to a ruby-laser ranging system to obtain data for refinement of geodetic parameters. A summary of the data employed to: (1) derive coordinates for the locations of various tracking stations; and (2) determine the gravitational potential of the earth, is presented
- …
