1,474 research outputs found

    Atmospheric histories and growth trends of C4F10, C5F12, C6F14, C7F16 and C8F18

    Get PDF
    Atmospheric observations and trends are presented for the high molecular weight perfluorocarbons (PFCs): decafluorobutane (C4F10), dodecafluoropentane (C5F12), tetradecafluorohexane (C6F14), hexadecafluoroheptane (C7F16) and octadecafluorooctane (C8F18). Their atmospheric histories are based on measurements of 36 Northern Hemisphere and 46 Southern Hemisphere archived air samples collected between 1973 to 2011 using the Advanced Global Atmospheric Gases Experiment (AGAGE) 'Medusa' preconcentration gas chromatography-mass spectrometry systems. A new calibration scale was prepared for each PFC, with estimated accuracies of 6.8% for C4F10, 7.8% for C5F12, 4.0% for C6F14, 6.6% for C7F16 and 7.9% for C8F18. Based on our observations the 2011 globally averaged dry air mole fractions of these heavy PFCs are: 0.17 parts-per-trillion (ppt, i.e., parts per 10(12)) for C4F10, 0.12 ppt for C5F12, 0.27 ppt for C6F14, 0.12 ppt for C7F16 and 0.09 ppt for C8F18. These atmospheric mole fractions combine to contribute to a global average radiative forcing of 0.35 mW m(-2), which is 6% of the total anthropogenic PFC radiative forcing (Montzka and Reimann, 2011; Oram et al., 2012). The growth rates of the heavy perfluorocarbons were largest in the late 1990s peaking at 6.2 parts per quadrillion (ppq, i.e., parts per 10(15)) per year (yr) for C4F10, at 5.0 ppq yr(-1) for C5F12 and 16.6 ppq yr(-1) for C6F14 and in the early 1990s for C7F16 at 4.7 ppq yr(-1) and in the mid 1990s for C8F18 at 4.8 ppq yr(-1). The 2011 globally averaged mean atmospheric growth rates of these PFCs are subsequently lower at 2.2 ppq yr(-1) for C4F10, 1.4 ppq yr(-1) for C5F12, 5.0 ppq yr(-1) for C6F14, 3.4 ppq yr(-1) for C7F16 and 0.9 ppq yr(-1) for C8F18. The more recent slowdown in the growth rates suggests that emissions are declining as compared to the 1980s and 1990s.</p

    Kinetics of the Multiferroic Switching in MnWO4_4

    Get PDF
    The time dependence of switching multiferroic domains in MnWO4_4 has been studied by time-resolved polarized neutron diffraction. Inverting an external electric field inverts the chiral magnetic component within rise times ranging between a few and some tens of milliseconds in perfect agreement with macroscopic techniques. There is no evidence for any faster process in the inversion of the chiral magnetic structure. The time dependence is well described by a temperature-dependent rise time suggesting a well-defined process of domain reversion. As expected, the rise times decrease when heating towards the upper boundary of the ferroelectric phase. However, switching also becomes faster upon cooling towards the lower boundary, which is associated with a first-order phase transition

    Nucleosomes in serum as a marker for cell death

    Get PDF
    The concentration of nucleosomes is elevated in blood of patients with diseases which are associated with enhanced cell death. In order to detect these circulating nucleosomes, we used the Cell Death Detection-ELISA(Plus) (CDDE) from Roche Diagnostics (Mannheim, Germany) (details at http:\textbackslash{}\textbackslash{}biochem.roche.com). For its application in liquid materials we performed various modifications: we introduced a standard curve with nucleosome-rich material, which enabled direct quantification and improved comparability of the values within (CVinterassay:3.0-4.1%) and between several runs (CVinterassay:8.6-13.5%), and tested the analytical specificity of the ELISA. Because of the fast elimination of nucleosomes from circulation and their limited stability, we compared plasma and serum matrix and investigated in detail the pre-analytical handling of serum samples which can considerably influence the test results. Careless venipuncture producing hemolysis, delayed centrifugation and bacterial contamination of the blood samples led to false-positive results; delayed stabilization with EDTA and insufficient storage conditions resulted in false-negative values. At temperatures of -20 degreesC, serum samples which were treated with 10 mM EDTA were stable for at least 6 months. In order to avoid possible interfering factors, we recommend a schedule for the pre-analytical handling of the samples. As the first stage, the possible clinical application was investigated in the sera of 310 persons. Patients with solid tumors (n = 220; mean = 361 Arbitrary Units (AU)) had considerably higher values than healthy persons (n = 50; mean = 30 AU; P = 0.0001) and patients with inflammatory diseases (n = 40; mean = 296 AU; p = 0.096). Within the group of patients with tumors, those in advanced stages (UICC 4) showed significantly higher values than those in early stages (UICC 1-3) (P = 0.0004)

    Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow

    Full text link
    We develop a theory to describe the reorientation phenomena in the lamellar phase of block copolymer melt under reciprocating shear flow. We show that similar to the steady-shear, the oscillating flow anisotropically suppresses fluctuations and gives rise to the parallel-perpendicular orientation transition. The experimentally observed high-frequency reverse transition is explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR

    Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules

    Get PDF
    In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs ω/ωc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and ωc, the frequency above which the distortion of the chain conformation dominates the materials’ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.

    Shear induced instabilities in layered liquids

    Full text link
    Motivated by the experimentally observed shear-induced destabilization and reorientation of smectic A like systems, we consider an extended formulation of smectic A hydrodynamics. We include both, the smectic layering (via the layer displacement u and the layer normal p) and the director n of the underlying nematic order in our macroscopic hydrodynamic description and allow both directions to differ in non equilibrium situations. In an homeotropically aligned sample the nematic director does couple to an applied simple shear, whereas the smectic layering stays unchanged. This difference leads to a finite (but usually small) angle between n and p, which we find to be equivalent to an effective dilatation of the layers. This effective dilatation leads, above a certain threshold, to an undulation instability of the layers. We generalize our earlier approach [Rheol. Acta, vol.39(3), 15] and include the cross couplings with the velocity field and the order parameters for orientational and positional order and show how the order parameters interact with the undulation instability. We explore the influence of various material parameters on the instability. Comparing our results to recent experiments and molecular dynamic simulations, we find a good qualitative agreement.Comment: 15 pages, 12 figures, accepted for publication in PR

    Doing the Creative Frontier: A Scientist and a Humanist Learn to Teach Humanities Together

    Get PDF
    This paper relates the story of two professors that have made a bridge between the two cultures, science and humanities. They teach a humanities course together

    Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines

    Get PDF
    Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis

    State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    Get PDF
    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing

    HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures

    Get PDF
    HFC-23 (also known as CHF3 [CHF subscript 3], fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product of HCFC-22 (CHClF2 [CHCIF subscript 2], chlorodifluoromethane) production. HCFC-22, an ozone depleting substance (ODS), is used extensively in commercial refrigeration and air conditioning, in the extruded polystyrene (XPS) foam industries (dispersive applications) and also as a feedstock in fluoropolymer manufacture (a non-dispersive use). Aside from small markets in specialty uses, HFC-23 has historically been considered a waste gas that was, and often still is, simply vented to the atmosphere. Efforts have been made in the past two decades to reduce HFC-23 emissions, including destruction (incineration) in facilities in developing countries under the United Nations Framework Convention on Climate Change's (UNFCCC) Clean Development Mechanism (CDM), and by process optimization and/or voluntary incineration by most producers in developed countries. We present observations of lower-tropospheric mole fractions of HFC-23 measured by "Medusa" GC/MSD instruments from ambient air sampled in situ at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote sites (2007–2009) and in Cape Grim air archive (CGAA) samples (1978–2009) from Tasmania, Australia. These observations are used with the AGAGE 2-D atmospheric 12-box model and an inverse method to produce model mole fractions and a "top-down" HFC-23 emission history. The model 2009 annual mean global lower-tropospheric background abundance is 22.6 (±0.2) pmol mol−1 [mol superscript -1]. The derived HFC-23 emissions show a "plateau" during 1997–2003, followed by a rapid ~50% increase to a peak of 15.0 (+1.3/−1.2) Gg/yr in 2006. Following this peak, emissions of HFC-23 declined rapidly to 8.6 (+0.9/−1.0) Gg/yr in 2009, the lowest annual emission of the past 15 years. We derive a 1990–2008 "bottom-up" HFC-23 emission history using data from the United Nations Environment Programme and the UNFCCC. Comparison with the top-down HFC-23 emission history shows agreement within the stated uncertainties. In the 1990s, HFC-23 emissions from developed countries dominated all other sources, then began to decline and eventually became fairly constant during 2003–2008. By this point, with developed countries' emissions essentially at a plateau, the major factor controlling the annual dynamics of global HFC-23 emissions became the historical rise of developing countries' HCFC-22 dispersive use production, which peaked in 2007. Thereafter in 2007–2009, incineration through CDM projects became a larger factor, reducing global HFC-23 emissions despite rapidly rising HCFC-22 feedstock production in developing countries.NASA Upper Atmospheric Research Program (Grant NNX07AE89G)NASA Upper Atmospheric Research Program (Grant NNX07AF09G)NASA Upper Atmospheric Research Program (Grant NNX07AE87G
    corecore