329 research outputs found

    On tiered small jump operators

    Full text link
    Predicative analysis of recursion schema is a method to characterize complexity classes like the class FPTIME of polynomial time computable functions. This analysis comes from the works of Bellantoni and Cook, and Leivant by data tiering. Here, we refine predicative analysis by using a ramified Ackermann's construction of a non-primitive recursive function. We obtain a hierarchy of functions which characterizes exactly functions, which are computed in O(n^k) time over register machine model of computation. For this, we introduce a strict ramification principle. Then, we show how to diagonalize in order to obtain an exponential function and to jump outside deterministic polynomial time. Lastly, we suggest a dependent typed lambda-calculus to represent this construction

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Implicit complexity for coinductive data: a characterization of corecurrence

    Full text link
    We propose a framework for reasoning about programs that manipulate coinductive data as well as inductive data. Our approach is based on using equational programs, which support a seamless combination of computation and reasoning, and using productivity (fairness) as the fundamental assertion, rather than bi-simulation. The latter is expressible in terms of the former. As an application to this framework, we give an implicit characterization of corecurrence: a function is definable using corecurrence iff its productivity is provable using coinduction for formulas in which data-predicates do not occur negatively. This is an analog, albeit in weaker form, of a characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034

    Provably Total Functions of Arithmetic with Basic Terms

    Full text link
    A new characterization of provably recursive functions of first-order arithmetic is described. Its main feature is using only terms consisting of 0, the successor S and variables in the quantifier rules, namely, universal elimination and existential introduction.Comment: In Proceedings DICE 2011, arXiv:1201.034

    Extracting verified decision procedures: DPLL and Resolution

    Get PDF
    This article is concerned with the application of the program extraction technique to a new class of problems: the synthesis of decision procedures for the classical satisfiability problem that are correct by construction. To this end, we formalize a completeness proof for the DPLL proof system and extract a SAT solver from it. When applied to a propositional formula in conjunctive normal form the program produces either a satisfying assignment or a DPLL derivation showing its unsatisfiability. We use non-computational quantifiers to remove redundant computational content from the extracted program and translate it into Haskell to improve performance. We also prove the equivalence between the resolution proof system and the DPLL proof system with a bound on the size of the resulting resolution proof. This demonstrates that it is possible to capture quantitative information about the extracted program on the proof level. The formalization is carried out in the interactive proof assistant Minlog

    A generic imperative language for polynomial time

    Full text link
    The ramification method in Implicit Computational Complexity has been associated with functional programming, but adapting it to generic imperative programming is highly desirable, given the wider algorithmic applicability of imperative programming. We introduce a new approach to ramification which, among other benefits, adapts readily to fully general imperative programming. The novelty is in ramifying finite second-order objects, namely finite structures, rather than ramifying elements of free algebras. In so doing we bridge between Implicit Complexity's type theoretic characterizations of feasibility, and the data-flow approach of Static Analysis.Comment: 18 pages, submitted to a conferenc

    A note on translations of c into i

    Get PDF

    Existentially-mute theories and existence under assumptions

    Get PDF

    Strong-normalization for arithmetic : (variations on a theme of prawitz)

    Get PDF

    Absoluteness of intuitionistic logic : (preliminary report)

    Get PDF
    corecore