11,669 research outputs found
Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection
In this work, we will show through three-dimensional particle-in-cell
simulations that direct laser acceleration in laser a wakefield accelerator can
generate sub-femtosecond electron bunches. Two simulations were done with two
laser pulse durations, such that the shortest laser pulse occupies only a
fraction of the first bubble, whereas the longer pulse fills the entire first
bubble. In the latter case, as the trapped electrons moved forward and
interacted with the high intensity region of the laser pulse, micro-bunching
occurred naturally, producing 0.5 fs electron bunches. This is not observed in
the short pulse simulation.Comment: AAC 201
Exact General Relativistic Perfect Fluid Disks with Halos
Using the well-known ``displace, cut and reflect'' method used to generate
disks from given solutions of Einstein field equations, we construct static
disks made of perfect fluid based on vacuum Schwarzschild's solution in
isotropic coordinates. The same method is applied to different exactsolutions
to the Einstein'sequations that represent static spheres of perfect fluids. We
construct several models of disks with axially symmetric perfect fluid halos.
All disks have some common features: surface energy density and pressures
decrease monotonically and rapidly with radius. As the ``cut'' parameter
decreases, the disks become more relativistic, with surface energy density and
pressure more concentrated near the center. Also regions of unstable circular
orbits are more likely to appear for high relativistic disks. Parameters can be
chosen so that the sound velocity in the fluid and the tangential velocity of
test particles in circular motion are less then the velocity of light. This
tangential velocity first increases with radius and reaches a maximum.Comment: 22 pages, 25 eps.figs, RevTex. Phys. Rev. D to appea
Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures
Gravitational collapse of radiation in an anti-de Sitter background is
studied. For the spherical case, the collapse proceeds in much the same way as
in the Minkowski background, i.e., massless naked singularities may form for a
highly inhomogeneous collapse, violating the cosmic censorship, but not the
hoop conjecture. The toroidal, cylindrical and planar collapses can be treated
together. In these cases no naked singularity ever forms, in accordance with
the cosmic censorship. However, since the collapse proceeds to form toroidal,
cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter
spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review
Does a relativistic metric generalization of Newtonian gravity exist in 2+1 dimensions?
It is shown that, contrary to previous claims, a scalar tensor theory of
Brans-Dicke type provides a relativistic generalization of Newtonian gravity in
2+1 dimensions. The theory is metric and test particles follow the space-time
geodesics. The static isotropic solution is studied in vacuum and in regions
filled with an incompressible perfect fluid. It is shown that the solutions can
be consistently matched at the matter vacuum interface, and that the Newtonian
behavior is recovered in the weak field regime.Comment: 6 pages, no figures, Revtex4. Some discussions on the physical nature
of the interior solution and on the omega->infinity limit and some references
added. Version to appear in Phys. Rev.
- …
