266 research outputs found

    Object Manipulation in Virtual Reality Under Increasing Levels of Translational Gain

    Get PDF
    Room-scale Virtual Reality (VR) has become an affordable consumer reality, with applications ranging from entertainment to productivity. However, the limited physical space available for room-scale VR in the typical home or office environment poses a significant problem. To solve this, physical spaces can be extended by amplifying the mapping of physical to virtual movement (translational gain). Although amplified movement has been used since the earliest days of VR, little is known about how it influences reach-based interactions with virtual objects, now a standard feature of consumer VR. Consequently, this paper explores the picking and placing of virtual objects in VR for the first time, with translational gains of between 1x (a one-to-one mapping of a 3.5m*3.5m virtual space to the same sized physical space) and 3x (10.5m*10.5m virtual mapped to 3.5m*3.5m physical). Results show that reaching accuracy is maintained for up to 2x gain, however going beyond this diminishes accuracy and increases simulator sickness and perceived workload. We suggest gain levels of 1.5x to 1.75x can be utilized without compromising the usability of a VR task, significantly expanding the bounds of interactive room-scale VR

    Consequences of using estimated response values from negligible interactions in factorial designs

    Get PDF
    This article analyzes the increase in the probability of committing type I and type II errors in assessing the significance of the effects when some properly selected runs have not been carried out and their responses have been estimated from the interactions considered null from scratch. This is done by simulating the responses from known models that represent a wide variety of practical situations that the experimenter will encounter; the responses considered to be missing are then estimated and the significance of the effects is assessed. Through comparison with the parameters of the model, the errors are then identified. To assess the significance of the effects when there are missing values, the Box-Meyer method has been used. The conclusions are that 1 missing value in 8 run designs and up to 3 missing values in 16 run designs experiments can be estimated without hardly any notable increase in the probability of error when assessing the significance of the effects.Peer ReviewedPostprint (author's final draft

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Fire Alters Plant Microbiome Assembly Patterns: Integrating the Plant and Soil Microbial Response to Disturbance

    Get PDF
    It is increasingly evident that the plant microbiome is a strong determinant of plant health. While the ability to manipulate the microbiome in plants and ecosystems recovering from disturbance may be useful, our understanding of the plant microbiome in regenerating plant communities is currently limited. Using 16S ribosomal RNA (rRNA) gene and internal transcribed spacer (ITS) region amplicon sequencing, we characterized the leaf, stem, fine root, rhizome, and rhizosphere microbiome of \u3c 1-yr-old aspen saplings and the associated bulk soil after a recent high-intensity prescribed fire across a burn severity gradient. Consistent with previous studies, we found that soil microbiomes are responsive to fire. We extend these findings by showing that certain plant tissue microbiomes also change in response to fire. Differences in soil microbiome compositions could be attributed to soil chemical characteristics, but, generally, plant tissue microbiomes were not related to plant tissue elemental concentrations. Using source tracking modeling, we also show that fire influences the relative dominance of microbial inoculum and the vertical inheritance of the sapling microbiome from the parent tree. Overall, our results demonstrate how fire impacts plant microbiome assembly, diversity, and composition and highlights potential for further research towards increasing plant fitness and ecosystem recovery after fire events

    A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin

    Get PDF
    Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner. © 2017, Springer Science+Business Media New York

    The integration of occlusion and disparity information for judging depth in autism spectrum disorder

    Get PDF
    In autism spectrum disorder (ASD), atypical integration of visual depth cues may be due to flattened perceptual priors or selective fusion. The current study attempts to disentangle these explanations by psychophysically assessing within-modality integration of ordinal (occlusion) and metric (disparity) depth cues while accounting for sensitivity to stereoscopic information. Participants included 22 individuals with ASD and 23 typically developing matched controls. Although adults with ASD were found to have significantly poorer stereoacuity, they were still able to automatically integrate conflicting depth cues, lending support to the idea that priors are intact in ASD. However, dissimilarities in response speed variability between the ASD and TD groups suggests that there may be differences in the perceptual decision-making aspect of the task

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world

    Colorectal Cancer Video for the Deaf Community: A Randomized Control Trial

    Get PDF
    The Deaf community experiences multiple barriers to accessing cancer information. Deaf participants (n = 144) were randomly assigned to view a colorectal cancer education video or another program in American Sign Language. They completed surveys pre- and post-intervention and at 2 months post-intervention. By using a crossover model, control group participants were offered the option of seeing the intervention video. The experimental group gained and retained significantly more colorectal cancer knowledge than the control group, and the control group demonstrated the greatest knowledge gain after crossing into the experimental arm. This video effectively informed the Deaf community about colorectal cancer

    Children's vomiting following posterior fossa surgery: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nausea and vomiting is a problem for children after neurosurgery and those requiring posterior fossa procedures appear to have a high incidence. This clinical observation has not been quantified nor have risk factors unique to this group of children been elucidated.</p> <p>Methods</p> <p>A six year retrospective chart audit at two Canadian children's hospitals was conducted. The incidence of nausea and vomiting was extracted. Hierarchical multivariable logistic regression was used to quantify risk and protective factors at 120 hours after surgery and early vs. late vomiting.</p> <p>Results</p> <p>The incidence of vomiting over a ten day postoperative period was 76.7%. Documented vomiting ranged from single events to greater than 20 over the same period. In the final multivariable model: adolescents (age 12 to <17) were less likely to vomit by 120 hours after surgery than other age groups; those who received desflurane, when compared to all other volatile anesthetics, were more likely to vomit, yet the use of ondansetron with desflurane decre kelihood. Children who had intraoperative ondansetron were more likely to vomit in the final multivariable model (perhaps because of its use, in the clinical judgment of the anesthesiologist, for children considered at risk). Children who started vomiting in the first 24 hours were more likely to be school age (groups 4 to <7 and 7 to <12) and receive desflurane. Nausea was not well documented and was therefore not analyzed.</p> <p>Conclusion</p> <p>The incidence of vomiting in children after posterior fossa surgery is sufficient to consider all children requiring these procedures to be at high risk for POV. Nausea requires better assessment and documentation.</p
    corecore