4 research outputs found

    Gravitino Dark Matter in the CMSSM and Implications for Leptogenesis and the LHC

    Full text link
    In the framework of the CMSSM we study the gravitino as the lightest supersymmetric particle and the dominant component of cold dark matter in the Universe. We include both a thermal contribution to its relic abundance from scatterings in the plasma and a non--thermal one from neutralino or stau decays after freeze--out. In general both contributions can be important, although in different regions of the parameter space. We further include constraints from BBN on electromagnetic and hadronic showers, from the CMB blackbody spectrum and from collider and non--collider SUSY searches. The region where the neutralino is the next--to--lightest superpartner is severely constrained by a conservative bound from excessive electromagnetic showers and probably basically excluded by the bound from hadronic showers, while the stau case remains mostly allowed. In both regions the constraint from CMB is often important or even dominant. In the stau case, for the assumed reasonable ranges of soft SUSY breaking parameters, we find regions where the gravitino abundance is in agreement with the range inferred from CMB studies, provided that, in many cases, a reheating temperature \treh is large, \treh\sim10^{9}\gev. On the other side, we find an upper bound \treh\lsim 5\times 10^{9}\gev. Less conservative bounds from BBN or an improvement in measuring the CMB spectrum would provide a dramatic squeeze on the whole scenario, in particular it would strongly disfavor the largest values of \treh\sim 10^{9}\gev. The regions favored by the gravitino dark matter scenario are very different from standard regions corresponding to the neutralino dark matter, and will be partly probed at the LHC.Comment: JHEP version, several improvements and update

    CP violation in the secluded U(1)'-extended MSSM

    Full text link
    We study the Higgs sector of the secluded U(1)U(1)'-extended MSSM (sMSSM) focusing on CP violation. Using the one-loop effective potential that includes contributions from quarks and squarks in the third generation, we search for the allowed region under theoretical and experimental constraints. It is found that the possible region for the electroweak vacuum to exist is quite limited, depending on the parameters in the model. The masses and couplings of the Higgs bosons are calculated with/without CP violation. Even at the tree level, CP violation is possible by complex soft SUSY breaking masses. Similar to the CPX scenario in the MSSM, the scalar-pseudoscalar mixing enables the lightest Higgs boson mass to become smaller than the ZZ boson mass while the coupling with the ZZ boson is sufficiently suppressed to avoid the LEP experimental constraints. However, unlike the CPX scenario, large μ\mu and AA are not required for the realization of large CP violation. The typical spectrum of the SUSY particles is thus different. We also investigate the possible upper bound of the lightest Higgs boson in the case of spontaneous CP violation. The maximal value of it can reach above 100 GeV with maximal CP-violating phases.Comment: 28 pages, 16 figures, JHEP styl
    corecore