788 research outputs found

    Fine-tuning implications for complementary dark matter and LHC SUSY searches

    Get PDF
    The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with dark matter and EW constraints, corresponding to a fine-tuning not worse than 1:100. To cover the complete low-fine-tuned region by SUSY searches at the LHC will require running at the full 14 TeV CM energy; in addition it may be tested indirectly by Higgs searches covering the mass range below 120 GeV.Comment: References added. Version accepted for publication in JHE

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    A multiple view interactive environment to support MATLAB and GNU/Octave program comprehension

    Get PDF
    Program comprehension plays an important role in Software Engineering. In fact, many of the software lifecycle activities depend on program comprehension. Despite the importance of MATLAB and Octave programing languages in the Engineering and Statistical communities, little attention has been paid to the conception, implementation and characterization of tools and techniques for the comprehension of programs written in these languages. Considering this scenario, this paper presents a Multiple View Interactive Environment (MVIE) called OctMiner that supports the comprehension of programs developed in the aforementioned languages. OctMiner provides a set of coordinated visual metaphors that can be adjusted in accordance with the comprehension goals. An example is presented to illustrate the main functionalities of OctMiner in a real scenario of program comprehension.info:eu-repo/semantics/acceptedVersio

    Scaffolding MATLAB and octave software comprehension through visualization

    Get PDF
    Multiple view interactive environments (MVIEs) provide visual resources to support the comprehension of a specific domain dataset. For any domain, different views can be selected and configured in a real time fashion to be better adjusted to the user needs. This paper focuses on the use of a MVIE called OctMiner to support the comprehension of MATLAB and GNU/Octave programs. The authors conducted a case study to characterize the use of OctMiner in the context of comprehension activities. Results provide preliminary evidence of the effectiveness of OctMiner to support the comprehension of programs written in MATLAB and Octave.info:eu-repo/semantics/acceptedVersio

    On the use of a multiple view interactive environment for MATLAB and octave program comprehension

    Get PDF
    WOS:000364988500049 (Nº de Acesso Web of Science)MATLAB or GNU/Octave programs can become very large and complex and therefore difficult to understand and maintain. The objective of this paper is presenting an approach to mitigate this problem, based upon a multiple view interactive environment (MVIE) called OctMiner. The latter provides visual resources to support program comprehension, namely the selection and configuration of several views to meet developers’ needs. For validation purposes, the authors conducted two case studies to characterize the use of OctMiner in the context of software comprehension activities. The results provided initial evidences of its effectiveness to support the comprehension of programs written in the aforementioned languages
    corecore