26,001 research outputs found

    λ\lambda-symmetries for discrete equations

    Full text link
    Following the usual definition of λ\lambda-symmetries of differential equations, we introduce the analogous concept for difference equations and apply it to some examples.Comment: 10 page

    A Lattice Simulation of the SU(2) Vacuum Structure

    Get PDF
    In this article we analyze the vacuum structure of pure SU(2) Yang-Mills using non-perturbative techniques. Monte Carlo simulations are performed for the lattice gauge theory with external sources to obtain the effective potential. Evidence from the lattice gauge theory indicating the presence of the unstable mode in the effective potential is reported.Comment: 12 pages, latex with revtex style, figures avalable by e-mail: [email protected]

    On the construction of partial difference schemes II: discrete variables and Schwarzian lattices

    Get PDF
    In the process of constructing invariant difference schemes which approximate partial differential equations we write down a procedure for discretizing an arbitrary partial differential equation on an arbitrary lattice. An open problem is the meaning of a lattice which does not satisfy the Clairaut--Schwarz--Young theorem. To analyze it we apply the procedure on a simple example, the potential Burgers equation with two different lattices, an orthogonal lattice which is invariant under the symmetries of the equation and satisfies the commutativity of the partial difference operators and an exponential lattice which is not invariant and does not satisfy the Clairaut--Schwarz--Young theorem. A discussion on the numerical results is also presented showing the different behavior of both schemes for two different exact solutions and their numerical approximations.Comment: 14 pages, 4 figure

    Difference schemes with point symmetries and their numerical tests

    Full text link
    Symmetry preserving difference schemes approximating second and third order ordinary differential equations are presented. They have the same three or four-dimensional symmetry groups as the original differential equations. The new difference schemes are tested as numerical methods. The obtained numerical solutions are shown to be much more accurate than those obtained by standard methods without an increase in cost. For an example involving a solution with a singularity in the integration region the symmetry preserving scheme, contrary to standard ones, provides solutions valid beyond the singular point.Comment: 26 pages 7 figure

    Lie discrete symmetries of lattice equations

    Full text link
    We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differential-difference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlev\'e I equation and of the Toda lattice equation

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    Automorphisms of p-local compact groups

    Get PDF
    Peer reviewedPostprin

    A new two-dimensional lattice model that is "consistent around a cube"

    Full text link
    For two-dimensional lattice equations one definition of integrability is that the model can be naturally and consistently extended to three dimensions, i.e., that it is "consistent around a cube" (CAC). As a consequence of CAC one can construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted a search based on this principle and certain additional assumptions. One of those assumptions was the "tetrahedron property", which is satisfied by most known equations. We present here one lattice equation that satisfies the consistency condition but does not have the tetrahedron property. Its Lax pair is also presented and some basic properties discussed.Comment: 8 pages in LaTe

    The Taming of QCD by Fortran 90

    Get PDF
    We implement lattice QCD using the Fortran 90 language. We have designed machine independent modules that define fields (gauge, fermions, scalars, etc...) and have defined overloaded operators for all possible operations between fields, matrices and numbers. With these modules it is very simple to write QCD programs. We have also created a useful compression standard for storing the lattice configurations, a parallel implementation of the random generators, an assignment that does not require temporaries, and a machine independent precision definition. We have tested our program on parallel and single processor supercomputers obtaining excellent performances.Comment: Talk presented at LATTICE96 (algorithms) 3 pages, no figures, LATEX file with ESPCRC2 style. More information available at: http://hep.bu.edu/~leviar/qcdf90.htm
    corecore