1,364 research outputs found
Non-Gaussian isocurvature perturbations in dark radiation
We study non-Gaussian properties of the isocurvature perturbations in the
dark radiation, which consists of the active neutrinos and extra light species,
if exist. We first derive expressions for the bispectra of primordial
perturbations which are mixtures of curvature and dark radiation isocurvature
perturbations. We also discuss CMB bispectra produced in our model and forecast
CMB constraints on the nonlinearity parameters based on the Fisher matrix
analysis. Some concrete particle physics motivated models are presented in
which large isocurvature perturbations in extra light species and/or the
neutrino density isocurvature perturbations as well as their non-Gaussianities
may be generated. Thus detections of non-Gaussianity in the dark radiation
isocurvature perturbation will give us an opportunity to identify the origin of
extra light species and lepton asymmetry.Comment: 32 pages, 7 figure
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Inhomogeneous non-Gaussianity
We propose a method to probe higher-order correlators of the primordial
density field through the inhomogeneity of local non-Gaussian parameters, such
as f_NL, measured within smaller patches of the sky. Correlators between
n-point functions measured in one patch of the sky and k-point functions
measured in another patch depend upon the (n+k)-point functions over the entire
sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to
detect or constrain higher-order correlators in local models of
non-Gaussianity, as well as to distinguish between single and multiple-source
scenarios for generating the primordial density perturbation, and more
generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches
the published versio
The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium
We present a suite of full hydrodynamical cosmological simulations that
quantitatively address the impact of neutrinos on the (mildly non-linear)
spatial distribution of matter and in particular on the neutral hydrogen
distribution in the Intergalactic Medium (IGM), which is responsible for the
intervening Lyman-alpha absorption in quasar spectra. The free-streaming of
neutrinos results in a (non-linear) scale-dependent suppression of power
spectrum of the total matter distribution at scales probed by Lyman-alpha
forest data which is larger than the linear theory prediction by about 25% and
strongly redshift dependent. By extracting a set of realistic mock quasar
spectra, we quantify the effect of neutrinos on the flux probability
distribution function and flux power spectrum. The differences in the matter
power spectra translate into a ~2.5% (5%) difference in the flux power spectrum
for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small
effect is difficult to detect from present Lyman-alpha forest data and nearly
perfectly degenerate with the overall amplitude of the matter power spectrum as
characterised by sigma_8. If the results of the numerical simulations are
normalized to have the same sigma_8 in the initial conditions, then neutrinos
produce a smaller suppression in the flux power of about 3% (5%) for Sigma
m_{\nu} = 0.6 eV (2
sigma C.L.), comparable to constraints obtained from the cosmic microwave
background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres
WMAP constraints on inflationary models with global defects
We use the cosmic microwave background angular power spectra to place upper
limits on the degree to which global defects may have aided cosmic structure
formation. We explore this under the inflationary paradigm, but with the
addition of textures resulting from the breaking of a global O(4) symmetry
during the early stages of the Universe. As a measure of their contribution, we
use the fraction of the temperature power spectrum that is attributed to the
defects at a multipole of 10. However, we find a parameter degeneracy enabling
a fit to the first-year WMAP data to be made even with a significant defect
fraction. This degeneracy involves the baryon fraction and the Hubble constant,
plus the normalization and tilt of the primordial power spectrum. Hence,
constraints on these cosmological parameters are weakened. Combining the WMAP
data with a constraint on the physical baryon fraction from big bang
nucleosynthesis calculations and high-redshift deuterium abundance, limits the
extent of the degeneracy and gives an upper bound on the defect fraction of
0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio
Future Directions in Parity Violation: From Quarks to the Cosmos
I discuss the prospects for future studies of parity-violating (PV)
interactions at low energies and the insights they might provide about open
questions in the Standard Model as well as physics that lies beyond it. I cover
four types of parity-violating observables: PV electron scattering; PV hadronic
interactions; PV correlations in weak decays; and searches for the permanent
electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions,
Milos, Greece (May, 2006); 10 page
Truthmakers and modality
This paper attempts to locate, within an actualist ontology, truthmakers for modal truths: truths of the form or . In section 1 I motivate the demand for substantial truthmakers for modal truths. In section 2 I criticise Armstrong’s account of truthmakers for modal truths. In section 3 I examine essentialism and defend an account of what makes essentialist attributions true, but I argue that this does not solve the problem of modal truth in general. In section 4 I discuss, and dismiss, a theistic account of the source of modal truth proposed by Alexander Pruss. In section 5 I offer a means of (dis)solving the problem
Transport equations for the inflationary trispectrum
We use transport techniques to calculate the trispectrum produced in
multiple-field inflationary models with canonical kinetic terms. Our method
allows the time evolution of the local trispectrum parameters, tauNL and gNL,
to be tracked throughout the inflationary phase. We illustrate our approach
using examples. We give a simplified method to calculate the superhorizon part
of the relation between field fluctuations on spatially flat hypersurfaces and
the curvature perturbation on uniform density slices, and obtain its
third-order part for the first time. We clarify how the 'backwards' formalism
of Yokoyama et al. relates to our analysis and other recent work. We supply
explicit formulae which enable each inflationary observable to be computed in
any canonical model of interest, using a suitable first-order ODE solver.Comment: 24 pages, plus references and appendix. v2: matches version published
in JCAP; typo fixed in Eq. (54
Sharp Trace Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian
In this work we establish trace Hardy and trace Hardy-Sobolev-Maz'ya
inequalities with best Hardy constants, for domains satisfying suitable
geometric assumptions such as mean convexity or convexity. We then use them to
produce fractional Hardy-Sobolev-Maz'ya inequalities with best Hardy constants
for various fractional Laplacians. In the case where the domain is the half
space our results cover the full range of the exponent of the
fractional Laplacians. We answer in particular an open problem raised by Frank
and Seiringer \cite{FS}.Comment: 42 page
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
- …
