191 research outputs found
Positive and generalized positive real lemma for slice hyperholomorphic functions
In this paper we prove a quaternionic positive real lemma as well as its
generalized version, in case the associated kernel has negative squares for
slice hyperholomorphic functions. We consider the case of functions with
positive real part in the half space of quaternions with positive real part, as
well as the case of (generalized) Schur functions in the open unit ball
Signature of Schwinger's pair creation rate via radiation generated in graphene by strong electric current
Electron - hole pairs are copuously created by an applied electric field near
the Dirac point in graphene or similar 2D electronic systems. It was shown
recently that for sufficiently large electric fields and ballistic times the
I-V characteristics become strongly nonlinear due to Schwinger's pair creation.
Since there is no energy gap the radiation from the pairs' annihilation is
enhanced. The spectrum of radiation is calculated. The angular and polarization
dependence of the emitted photons with respect to the graphene sheet is quite
distinctive. For very large currents the recombination rate becomes so large
that it leads to the second Ohmic regime due to radiation friction.Comment: 9 pages, 7 figure
Envisioning futures of practice-centered computing
© Copyright 2019 held by Authors. In this panel, we will engage with the conference's membership and friends to consider directions for the possible futures of practice-centered computing. This panel is not targeting or aiming to result in a single, agreed "universal” vision, nor to ask for a shared vision among the panelists and the audience. Rather, we offer several and diverse vision statements by distinguished and innovative ECSCW scholars, being experts in their specific domain or context of research. These statements will be necessarily incomplete until the ECSCW membership has joined the discussion, offering their own, additional visions of the futures of the field. With this, the panel aims to engage in a discussion that foresees exciting future research directions for the field of ECSCW but likewise also unveils potential hurdles the community might face
Limited contribution of permafrost carbon to methane release from thawing peatlands
Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands
Interaction of microtubules and actin during the post-fusion phase of exocytosis
Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis
The COGs (context, object, and goals) in multisensory processing
Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications
Aldehyde-hydrate equilibrium in nucleobase 2-oxoethyl derivatives: An NMR, ESI-MS and theoretical study
N-2-oxoethyl derivatives of nucleobases are useful starting materials for the preparation of potentially active nucleoside analogues. The 1HNMR, 13CNMR, DEPT and ESI-MS spectra of adenine and thymine N-2-oxoethyl derivatives reveal that the different species in equilibrium exist mainly in two forms: aldehyde and hydrate. The NMR spectra show that the equilibrium is shifted towards the hydrate form in water-DMSO 2:1, giving equilibrium constants of 8.3 and 5.3 for adenine and thymine derivatives, respectively. ESI-MS experiments show the dependence of equilibrium shift on pH: in the case of the thymine derivative, the effect on the equilibrium is more important than in the case of the adenine derivative; this difference is explained considering different protonation sites in both structures. All assumptions are supported by theoretical calculations, which suggest the important role played by solvent in the stabilization of molecular structures and equilibrium shift. All aspects analyzed in this work are very important in order to understand the further reactivity of these nucleobase derivatives.Facultad de Ciencias Exacta
BSL2-compliant lethal mouse model of SARS-CoV-2 and variants of concern to evaluate therapeutics targeting the Spike protein
Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatibl
- …
