18 research outputs found

    Muscle size explains low passive skeletal muscle force in heart failure patients.

    Get PDF
    BACKGROUND: Alterations in skeletal muscle function and architecture have been linked to the compromised exercise capacity characterizing chronic heart failure (CHF). However, how passive skeletal muscle force is affected in CHF is not clear. Understanding passive force characteristics in CHF can help further elucidate the extent to which altered contractile properties and/or architecture might affect muscle and locomotor function. Therefore, the aim of this study was to investigate passive force in a single muscle for which non-invasive measures of muscle size and estimates of fiber force are possible, the soleus (SOL), both in CHF patients and age- and physical activity-matched control participants. METHODS: Passive SOL muscle force and size were obtained by means of a novel approach combining experimental data (dynamometry, electromyography, ultrasound imaging) with a musculoskeletal model. RESULTS: We found reduced passive SOL forces (∼30%) (at the same relative levels of muscle stretch) in CHF vs. healthy individuals. This difference was eliminated when force was normalized by physiological cross sectional area, indicating that reduced force output may be most strongly associated with muscle size. Nevertheless, passive force was significantly higher in CHF at a given absolute muscle length (non length-normalized) and likely explained by the shorter muscle slack lengths and optimal muscle lengths measured in CHF compared to the control participants. This later factor may lead to altered performance of the SOL in functional tasks such gait. DISCUSSION: These findings suggest introducing exercise rehabilitation targeting muscle hypertrophy and, specifically for the calf muscles, exercise that promotes muscle lengthening

    Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

    Get PDF
    Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291

    Left Ventricular Adaptation to Exercise Training via Magnetic Resonance Imaging: Studies of Twin Responses to Understand Exercise THerapy.

    No full text
    PURPOSE: Changes in left ventricular mass (LVM) and end-diastolic volume (EDV) in response to exercise training are important determinants of functional capacity in health and disease, but the impact of different exercise modalities remains unclear. METHODS: Using a randomized crossover design we studied the impact of resistance (RES) and endurance (END) training using cardiac magnetic resonance imaging in previously untrained monozygotic (MZ) and dizygotic (DZ) twin pairs (n = 72; 22 MZ pairs, 14 DZ same-sex pairs; 26.1 ± 5.4 yr). Twins, as pairs, undertook 3 months of RES and 3 months of END training (order randomized), separated by a 3-month washout. RESULTS: Group results revealed that END increased LVM (P 0.05). A higher proportion of individuals responded to END than RES for LVM (72% vs 38%, P 0.05). CONCLUSIONS: Our findings indicate that cardiac adaptation in response to exercise is modality-specific and that low responders to one mode of exercise can be high responders to an alternative. Heritability estimates based on cross-sectional data, which suggested a genetic contribution to LVM, do not accord with estimates based on training effects, which indicated limited genetic impact on adaptation in this 3-month study of exercise training. This study has implications for understanding the physiological and health impacts of typically used exercise modalities on cardiac adaptation in previously untrained individuals
    corecore