28 research outputs found

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ (5σ) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Searching for solar KDAR with DUNE

    Get PDF

    College Women Eating Disorder Diagnostic Profile and DSM-5

    No full text
    A consistent diagnostic profile describing college women with eating disorders has been well established in the college health and mental health literature. This diagnostic framework traditionally has been associated with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision1 Eating Disorders Not Otherwise Specified category. In this article, the authors discuss implications of the recently revised Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition2 eating disorder diagnostic categories for the existing college women eating disorder profile

    Introduction

    No full text

    Evidence-Based Interventions for Eating Disorders in Children and Adolescents

    No full text
    This chapter specifically focuses on what are considered the principal eating disorders: anorexia nervosa, bulimia nervosa, binge-eating disorder, and closely related variants. For adolescents with anorexia nervosa, family-based therapy is the treatment of choice based on the scientific evidence. Cognitive-behavioral therapy is recommended in instances where family-based therapy is ineffective or unsuccessful. Early studies show promise for treatment of anorexia nervosa and bulimia nervosa. Many treatment approaches for children and adolescents with eating disorders are focused on outpatient approaches; however, a minority of patients may benefit when inpatient interventions are required. Interpersonal therapy may be a promising treatment for adolescents with binge-eating disorder but needs further study. The authors suggest more randomized controlled trials and meta-analyses need to be conducted on eating disorders with children and adolescent populations in order to determine the best course of treatment for each disorder, as well as the factors that influence and impact treatment outcomes.David H. Gleaves and Sophie C. Dahlenbur
    corecore