107 research outputs found

    Persistence of Diophantine flows for quadratic nearly-integrable Hamiltonians under slowly decaying aperiodic time dependence

    Full text link
    The aim of this paper is to prove a Kolmogorov-type result for a nearly-integrable Hamiltonian, quadratic in the actions, with an aperiodic time dependence. The existence of a torus with a prefixed Diophantine frequency is shown in the forced system, provided that the perturbation is real-analytic and (exponentially) decaying with time. The advantage consists of the possibility to choose an arbitrarily small decaying coefficient, consistently with the perturbation size.Comment: Several corrections in the proof with respect to the previous version. Main statement unchange

    Time quasi-periodic gravity water waves in finite depth

    Get PDF
    We prove the existence and the linear stability of Cantor families of small amplitude time quasi-periodic standing water wave solutions\u2014namely periodic and even in the space variable x\u2014of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure. This is a small divisor problem. The main difficulties are the fully nonlinear nature of the gravity water waves equations\u2014the highest order x-derivative appears in the nonlinear term but not in the linearization at the origin\u2014and the fact that the linear frequencies grow just in a sublinear way at infinity. We overcome these problems by first reducing the linearized operators, obtained at each approximate quasi-periodic solution along a Nash\u2013Moser iterative scheme, to constant coefficients up to smoothing operators, using pseudo-differential changes of variables that are quasi-periodic in time. Then we apply a KAM reducibility scheme which requires very weak Melnikov non-resonance conditions which lose derivatives both in time and space. Despite the fact that the depth parameter moves the linear frequencies by just exponentially small quantities, we are able to verify such non-resonance conditions for most values of the depth, extending degenerate KAM theory

    Cerebral ischemic damage in diabetes: an inflammatory perspective

    Get PDF
    corecore