837 research outputs found

    NDE of Thick Composites in the Aerospace Industry — An Overview

    Get PDF
    Designers are turning to thick fiber reinforced composites, with increasing success, in order to meet the unique structural requirements which arise within the aerospace industry. These composites offer many superior properties, especially in the design of solid rocket motor cases, where there is a tremendous potential for advantage in strength-to-weight and stiffness-to-weight ratios over conventional materials [1,2]. The increased use of thick fiber reinforced composites presents quite a challenge to the NonDestructive Evaluation (NDE) community. To inspect these materials, conventional NDE techniques must be modified and/or new techniques must be developed to permit interrogation of the full material thickness and adjacent bondlines. Thick fiber reinforced composites exhibit a degree of anisotropy that is orders of magnitude above that of previously employed structural materials (i.e., metals). This anisotropy stems not only from the basic construction of the composite (oriented fibers imbedded within a matrix), but also from what are currently considered “acceptable flaws” within the material (varying degrees of delamination, matrix cracking, porosity, etc.). Successful NDE requires that one be able to distinguish the signals from these “acceptable flaws” from those deemed unacceptable. For the detection of some types of flaws, conventional techniques can be applied to composites with only slight modification, whereas for others, new techniques must be developed. For instance, recently, a large (expensive) solid rocket motor segment sustained an accidental impact. Standard ultrasonic inspection techniques successfully revealed delaminations between a number of layers in the composite case beneath the point of contact. Structural analysis, however, indicated that additional information regarding the degree of fiber breakage was needed. Unfortunately, since no NDE technique was available to assess the degree of fiber breakage, the contractor had to assume the worst and, consequently, scrap the motor

    Investigating hyper-vigilance for social threat of lonely children

    Get PDF
    The hypothesis that lonely children show hypervigilance for social threat was examined in a series of three studies that employed different methods including advanced eye-tracking technology. Hypervigilance for social threat was operationalized as hostility to ambiguously motivated social exclusion in a variation of the hostile attribution paradigm (Study 1), scores on the Children’s Rejection-Sensitivity Questionnaire (Study 2), and visual attention to socially rejecting stimuli (Study 3). The participants were 185 children (11 years-7 months to 12 years-6 months), 248 children (9 years-4 months to 11 years-8 months) and 140 children (8 years-10 months to 12 years-10 months) in the three studies, respectively. Regression analyses showed that, with depressive symptoms covaried, there were quadratic relations between loneliness and these different measures of hypervigilance to social threat. As hypothesized, only children in the upper range of loneliness demonstrated elevated hostility to ambiguously motivated social exclusion, higher scores on the rejection sensitivity questionnaire, and disengagement difficulties when viewing socially rejecting stimuli. We found that very lonely children are hypersensitive to social threat

    How large should whales be?

    Get PDF
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Procedure for the Alignment of an Ultrasonic Beam for Nondestructive Applications

    Full text link
    Most of the nondestructive evaluation (NDE) work using ultrasonic waves generally involves detection and sizing of flaws (e.g., cracks, voids, etc.), and analysis of waves scattering from boundaries with different elastic properties inside a material. Alignment of the ultrasonic measuring system by maximizing the amplitude of the received signal is adequate for these measurements. For characterization of the material properties, one must determine the elastic constants of the material. If the material is anisotropic (e.g., composites), assuming orthorhombic symmetry, one needs a complete set of 9 elastic constants for the characterization.</p

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma

    Get PDF
    Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.United States. National Institutes of Health (R01GM107536)Alex's Lemonade Stand FoundationHoward Hughes Medical InstituteBoston Children's Hospital. Manton Center for Orphan Disease ResearchNational Institute of General Medical Sciences (U.S.) (T32GM007753

    Supracricoid partial laryngectomy in the management of t3 laryngeal cancer

    Get PDF
    Objective. To evaluate the oncologic results only in T3 glottic and supraglottic cancers regarding supracricoid partial laryngectomy (SCPL) not requiring total laryngectomy and to assess functional results by self-evaluation by the patient. Study Design. Case series with medical record review. Setting. Single tertiary care center. Subjects and Methods. Thirty-two patients with laryngeal squamous cell carcinoma, previously untreated, who underwent SCPL with cricohyoidopexy or cricohyoidoepiglottopexy were reviewed. Results. At 1, 3, and 5 years, the disease-free survival rates were 96.9%, 89.4%, and 78.2%; overall survival rates were 96.9%, 93.2%, and 87.3%; local control and locoregional control rates were 100%, 96.2%, and 96.2%; and distant metastasis-free survival rates were 100%, 100%, and 88.2%, respectively. Aspiration pneumonia was the most common complication observed. The 3 laryngeal functions (speech, swallowing, and breathing) were spared in 83.9% of patients. Conclusion. Supracricoid partial laryngectomy for selected glottic and supraglottic T3 tumors has excellent oncologic and functional results

    Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming?

    Get PDF
    Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels

    Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism

    Get PDF
    Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts
    corecore