698 research outputs found

    Effect of autofrettage in the thick-walled cylinder with a radial cross-bore

    Get PDF
    The effect of autofrettage on the stress level in thick-walled cylinders with a radial cross-bore is investigated by applying inelastic finite element analysis with cyclic pressure loading. A macro is created in ANSYS to calculate the equivalent alternating stress intensity, S-eq, based on the ASME Boiler and Pressure Vessel Code. The value of S-eq is used to evaluate the fatigue life of the vessel. For a specific cyclic load level, a distinct optimum autofrettage pressure is identified by plotting autofrettage pressure against the number of cycles from design fatigue data. The fatigue life of the autofrettaged vessel with such an optimum pressure is increased compared with the case where no autofrettage is used

    Detection and Genetic Environment of Pleuromutilin-Lincosamide-Streptogramin A Resistance Genes in Staphylococci Isolated from Pets

    Get PDF
    Increasing emergence of staphylococci resistant to pleuromutilins, lincosamides, and streptogramin A (PLSA) and isolated from humans and pets is a growing public health concern worldwide. Currently, there was only one published study regarding one of the PLSA genes, vga(A) detected in staphylococci isolated from cat. In this study, eleven pleuromutilin-resistant staphylococci from pets and two from their owners were isolated and further characterized for their antimicrobial susceptibilities, plasmid profiles, genotypes, and genetic context of the PLSA resistance genes. The gene sal(A) identified in 11 staphylococcal isolates was found for the first time in Staphylococcus haemolyticus, Staphylococcus epidermidis, and Staphylococcus xylosus. Moreover, these 11 isolates shared the identical regions flanking the sal(A) gene located in the chromosomal DNA. Two S. haemolyticus isolates from a cat and its owner carried similar vga(A)LC plasmids and displayed indistinguishable PFGE patterns. A novel chromosomal multidrug resistance genomic island (MDRGI) containing 13 resistance genes, including lsa(E), was firstly identified in S. epidermidis. In addition, vga(A)LC, sal(A), and lsa(E) were for the first time identified in staphylococcal isolates originating from pet animals. The plasmids, chromosomal DNA region, and MDRGI associated with the PLSA resistance genes vga(A), vga(A)LC, sal(A), and lsa(E) are present in staphylococci isolated from pets and humans and present significant challenges for the clinical management of infections by limiting therapeutic options

    Decision-Directed Channel Estimation Implementation for Spectral Efficiency Improvement in Mobile MIMO-OFDM

    Get PDF
    Channel estimation algorithms and their implementations for mobile receivers are considered in this paper. The 3GPP long term evolution (LTE) based pilot structure is used as a benchmark in a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) receiver. The decision directed (DD) space alternating generalized expectation-maximization (SAGE) algorithm is used to improve the performance from that of the pilot symbol based least-squares (LS) channel estimator. The performance is improved with high user velocities, where the pilot symbol density is not sufficient. Minimum mean square error (MMSE) filtering is also used in estimating the channel in between pilot symbols. The pilot overhead can be reduced to a third of the LTE pilot overhead with DD channel estimation, obtaining a ten percent increase in data throughput. Complexity reduction and latency issues are considered in the architecture design. The pilot based LS, MMSE and the SAGE channel estimators are implemented with a high level synthesis tool, synthesized with the UMC 0.18 μm CMOS technology and the performance-complexity trade-offs are studied. The MMSE estimator improves the performance from the simple LS estimator with LTE pilot structure and has low power consumption. The SAGE estimator has high power consumption but can be used with reduced pilot density to increase the data rate.National Science FoundationTekesElektrobitRenesas Mobile EuropeAcademy of FinlandNokia Siemens NetworksXilin

    Training End-to-End Unrolled Iterative Neural Networks for SPECT Image Reconstruction

    Full text link
    Training end-to-end unrolled iterative neural networks for SPECT image reconstruction requires a memory-efficient forward-backward projector for efficient backpropagation. This paper describes an open-source, high performance Julia implementation of a SPECT forward-backward projector that supports memory-efficient backpropagation with an exact adjoint. Our Julia projector uses only ~5% of the memory of an existing Matlab-based projector. We compare unrolling a CNN-regularized expectation-maximization (EM) algorithm with end-to-end training using our Julia projector with other training methods such as gradient truncation (ignoring gradients involving the projector) and sequential training, using XCAT phantoms and virtual patient (VP) phantoms generated from SIMIND Monte Carlo (MC) simulations. Simulation results with two different radionuclides (90Y and 177Lu) show that: 1) For 177Lu XCAT phantoms and 90Y VP phantoms, training unrolled EM algorithm in end-to-end fashion with our Julia projector yields the best reconstruction quality compared to other training methods and OSEM, both qualitatively and quantitatively. For VP phantoms with 177Lu radionuclide, the reconstructed images using end-to-end training are in higher quality than using sequential training and OSEM, but are comparable with using gradient truncation. We also find there exists a trade-off between computational cost and reconstruction accuracy for different training methods. End-to-end training has the highest accuracy because the correct gradient is used in backpropagation; sequential training yields worse reconstruction accuracy, but is significantly faster and uses much less memory.Comment: submitted to IEEE TRPM

    Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization.

    Get PDF
    P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na(+) and N-methyl-D-glucamine (NMDG(+)) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death.This work was supported by the Biotechnology and Biological Sciences Research Council (BB/F001320/1), the David James Studentship, Department of Pharmacology, University of Cambridge and the Marshall Scholarship.This paper was originally published in The Journal of Biological Chemistry (Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD, The Journal of Biological Chemistry 2014, 289, 46, 31983–31994, doi:10.1074/jbc.M114.574699

    Advanced three-dimensional tailored RF pulse for signal recovery in T 2 *-weighted functional magnetic resonance imaging

    Full text link
    T 2 * -weighted functional MR images are plagued by signal loss artifacts caused by susceptibility-induced through-plane dephasing. We present major advances to the original three-dimensional tailored RF (3DTRF) pulse method that pre-compensates the dephasing using three-dimensional selective excitation. The proposed 3DTRF pulses are designed iteratively with off-resonance incorporation and with a novel echo-volumar trajectory that frequency-encodes in z and phase-encodes in x,y . We also propose a computational scheme to accelerate the pulse design process. We demonstrate effective signal recovery in a 5-mm slice in both phantom and inferior brain, using 3DTRF pulses that are only 15.4 ms long. Compared to the original method, the new approach leads to significantly reduced pulse length and enhancement in slice selectivity. 3D images of the slice volume confirm fidelity of the excited phase pattern and slice profile. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55837/1/21048_ftp.pd

    Shorter SPECT Scans Using Self-supervised Coordinate Learning to Synthesize Skipped Projection Views

    Full text link
    Purpose: This study addresses the challenge of extended SPECT imaging duration under low-count conditions, as encountered in Lu-177 SPECT imaging, by developing a self-supervised learning approach to synthesize skipped SPECT projection views, thus shortening scan times in clinical settings. Methods: We employed a self-supervised coordinate-based learning technique, adapting the neural radiance field (NeRF) concept in computer vision to synthesize under-sampled SPECT projection views. For each single scan, we used self-supervised coordinate learning to estimate skipped SPECT projection views. The method was tested with various down-sampling factors (DFs=2, 4, 8) on both Lu-177 phantom SPECT/CT measurements and clinical SPECT/CT datasets, from 11 patients undergoing Lu-177 DOTATATE and 6 patients undergoing Lu-177 PSMA-617 radiopharmaceutical therapy. Results: For SPECT reconstructions, our method outperformed the use of linearly interpolated projections and partial projection views in relative contrast-to-noise-ratios (RCNR) averaged across different downsampling factors: 1) DOTATATE: 83% vs. 65% vs. 67% for lesions and 86% vs. 70% vs. 67% for kidney, 2) PSMA: 76% vs. 69% vs. 68% for lesions and 75% vs. 55% vs. 66% for organs, including kidneys, lacrimal glands, parotid glands, and submandibular glands. Conclusion: The proposed method enables reduction in acquisition time (by factors of 2, 4, or 8) while maintaining quantitative accuracy in clinical SPECT protocols by allowing for the collection of fewer projections. Importantly, the self-supervised nature of this NeRF-based approach eliminates the need for extensive training data, instead learning from each patient's projection data alone. The reduction in acquisition time is particularly relevant for imaging under low-count conditions and for protocols that require multiple-bed positions such as whole-body imaging.Comment: 25 pages, 5568 word

    Effect of Including Detector Response in SPECT Quantification of Focal I-131 Therapy

    Full text link
    With a regularized strip-integral (1D) SAGE reconstruction, circular-orbit SPECT estimates of phantom focal 131-I activity vary with changes in the level of uniform background. They also vary with changes in image resolution due to different settings of the radius of rotation. To solve these problems, we investigated the effect of employing two different depth-dependent detector-response models. A regularized plane-by-plane (2D) SAGE algorithm reduced dependence of the counts-to-activity conversion factor on relative background concentration by 37% compared to the 1D SAGE. With unregularized multi-plane (3D) OSEM reconstruction, initial results showed: 1) a conversion factor that was independent of relative background concentration, and 2) a recovery coefficient that was approximately 1 for any sphere volume down to 20cc. We conclude that using a 3D detector-response model has the potential to eliminate bias problems. For a patient, the preliminary activity-estimate changes using 3D OSEM compared to 1D SAGE were: 1) +16% for a large tumor, and 2) -35% for a small tumor for which recovery-coefficient-based-correction-factor errors can be large.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85991/1/Fessler170.pd
    corecore